Factorización de polinomios (1ºBS)

De Wikipedia

Tabla de contenidos

Divisibilidad de polinomios

(pág. 74)

Polinomios múltiplos y divisores

Un polinomio Q(x)\, es divisor de otro, P(x)\, y lo representaremos por Q(x)|P(x)\;, si la división P(x):\,Q(x)\, es exacta, es decir, cuando existe otro polinomio C(x)\; tal que:

P(x)=\,Q(x)\cdot C(x)\,

También diremos que P(x)\, es divisible por Q(x)\, o que P(x)\, es un múltiplo de Q(x)\,.

La divisibilidad de polinomios es semejante a la divisibilidad con números enteros. Asimismo, la factorización de polinomios equivale a la descomposición de un número en factores primos, y los conceptos de máximo común divisor, mínimo común múltiplo e irreducibilidad son similares a los correspondientes conceptos numéricos.

Polinomios irreducibles

Un polinomio P(x)\, es irreducible cuando ningún polinomio de grado inferior es divisor suyo.

Factorización de polinomios

Factorizar un polinomio es descomponerlo en producto de polinomios con el menor grado posible.

Factorización de polinomios de grado 2

ejercicio

Factorización de polinomios de segundo grado


Un polinomio de segundo grado, kx^2+mx+n\;, con raíces rales, a\; y b\;, se puede factorizar de la forma

k(x-a)(x-b)\;

ejercicio

Ejemplos: Factorización de polinomios de segundo grado y reducibles


Factoriza los siguientes polinomios

a) 5x^2+5x-60\;
b) 5x^3+5x^2-60x\;

Procedimientos para la factorización de polinomios de grado mayor que 2

(pág. 75)

  • Siempre que se pueda, sacaremos x\; factor común.
  • Mediante la regla de Ruffini buscaremos las raíces enteras del polinomio, que se hallan entre los divisores del término independiente.
  • También podemos buscar las raíces fraccionarias, que se encontrarían entre las fracciones formadas dividiendo los divisores del término independiente entre los divisores del término de mayor grado.
  • Si encontramos una raíz x=a\; de un polinomio P(x)\;, tendremos que P(x)=(x-a) \cdot Q(x)\;, donde Q(x)\; tiene un grado menos que P(x)\;. (Ver raíces de un polinomio).

Un polinomio de grado mayor que 2 no pueda factorizarse usando los procedimientos anteriores, es poco probable que podamos hacerlo con los conocimientos que tenemos.

En algunos casos, como en el de los polinomios bicuadrados, que son polinomios de la forma ax^4+bx^2+c\;, si podremos hallarle las raices, resolviendo la ecuación bicuadrada que resulta de igualarlo a cero.

ejercicio

Ejemplos: Factorización de polinomios bicuadrados


Factoriza el siguiente polinomio: P(x)=x^4 - 7x^2 + 6 \;\!

Factorización de un polinomio mediante la regla de Ruffini

Para factorizar un polinomio mediante la regla de Ruffini, aplicaremos ésta sucesivamente, utilizando como candidatos a raíces enteras, los divisores del término independiente y como candidatos a raices fraccionarias, las que resultan de dividir los divisores del término independiente entre los divisores del término de mayor grado. Cuando nos quede un polinomio de segundo grado en el cociente, aplicaremos la fórmula de la ecuación de segundo grado y obtendremos las dos últimas raíces y por tanto los dos últimos factores. Esto será así, siempre y cuando, el discriminante de la ecuación no sea negativo, ya que de serlo, no habrá más raíces y no podremos descomponerlo más.

ejercicio

Ejemplo: Regla de Ruffini


Factoriza el siguiente polinomio:

P(x)=3x^6-3x^5-117x^4+327x^3-210x^2\,\!

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Factorización de polinomios


(Pág. 75)

1, 2

3

Videotutoriales

Herramientas personales
* AVISO: Si los applets de Java no te funcionan debes usar Firefox, instalar Java e incluir http://maralboran.org en la lista de excepciones del panel de Java ubicado en: Panel de Control > Java > Seguridad > Editar lista de sitios