Ecuaciones de Segundo Grado (PACS)
De Wikipedia
| Revisión de 18:08 24 sep 2008 Juanmf (Discusión | contribuciones) ← Ir a diferencia anterior | Revisión de 08:59 15 ene 2009 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → | ||
| Línea 168: | Línea 168: | ||
| <center>[http://maralboran.org/web_ma/descartes/4b_eso/Ecuaciones2grado/eg21_2.html '''Click''' aquí si no se ve bien la escena]</center> | <center>[http://maralboran.org/web_ma/descartes/4b_eso/Ecuaciones2grado/eg21_2.html '''Click''' aquí si no se ve bien la escena]</center> | ||
| }} | }} | ||
| - | |||
| {{p}} | {{p}} | ||
| + | {{Ejercicios de ecuaciones de segundo grado}} | ||
| - | ==Resolución de problemas mediante ecuaciones de segundo grado== | ||
| - | {{AI2|titulo=Actividades Interactivas: ''Planteamiento y resolución de ecuaciones de segundo grado''|cuerpo= | ||
| - | {{ai_cuerpo | ||
| - | |enunciado='''Actividad 1:''' Un campo de fútbol deberá ocupar una superficie rectangular de 7.500 m², siendo el largo 25 m mayor que el ancho. Halla las dimensiones del campo. | ||
| - | |actividad= | ||
| - | |||
| - | <center><iframe> | ||
| - | url=http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayerP3V?p3v=true&xref=200412020933_PRE_0_-120312879&mode=1&rtc=1001&locale=es&cache=false | ||
| - | width=100% | ||
| - | height=620 | ||
| - | name=myframe | ||
| - | </iframe></center> | ||
| - | <center>[http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayerP3V?p3v=true&xref=200412020933_PRE_0_-120312879&mode=1&rtc=1001&locale=es&cache=false '''Click''' aquí si no se ve bien la escena]</center> | ||
| - | }} | ||
| - | {{ai_cuerpo | ||
| - | |enunciado='''Actividad 2:''' Quiero rodear una parcela rectangular de 750 m² de superficie y 110 m de perímetro, con una valla. ¿Cómo debo cortar los 110 m de valla para rodearla? | ||
| - | |actividad= | ||
| - | |||
| - | <center><iframe> | ||
| - | url=http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayerP3V?p3v=true&xref=200412020918_PRE_0_70323000&mode=1&rtc=1001&locale=es&cache=false | ||
| - | width=100% | ||
| - | height=620 | ||
| - | name=myframe | ||
| - | </iframe></center> | ||
| - | <center>[http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayerP3V?p3v=true&xref=200412020918_PRE_0_70323000&mode=1&rtc=1001&locale=es&cache=false '''Click''' aquí si no se ve bien la escena]</center> | ||
| - | }} | ||
| - | |||
| - | }} | ||
| - | |||
| - | ==Ejercicios== | ||
| - | {{AI2|titulo=Actividades Interactivas: ''Ejercicios de autoevaluación''|cuerpo= | ||
| - | {{ai_cuerpo | ||
| - | |enunciado='''Actividad 1:''' El discriminante. | ||
| - | |actividad= | ||
| - | |||
| - | <center><iframe> | ||
| - | url=http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayerP3V?p3v=true&xref=200412020934_AC_0_381923148&mode=1&rtc=1001&locale=es&cache=false | ||
| - | width=100% | ||
| - | height=620 | ||
| - | name=myframe | ||
| - | </iframe></center> | ||
| - | }} | ||
| - | |||
| - | {{ai_cuerpo | ||
| - | |enunciado='''Actividad 2:''' Resuelve ecuaciones de segundo grado. | ||
| - | |actividad= | ||
| - | |||
| - | <center><iframe> | ||
| - | url=http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayerP3V?p3v=true&xref=200412020937_AC_0_-1287755195&mode=1&rtc=1001&locale=es&cache=false | ||
| - | width=100% | ||
| - | height=620 | ||
| - | name=myframe | ||
| - | </iframe></center> | ||
| - | }} | ||
| - | {{ai_cuerpo | ||
| - | |enunciado='''Actividad 3:''' Soluciones de una ecuación de segundo grado. | ||
| - | |actividad= | ||
| - | |||
| - | <center><iframe> | ||
| - | url=http://contenidos.santillanaenred.com/jukebox/servlet/GetPlayerP3V?p3v=true&xref=200412020938_AC_0_-56244463&mode=1&rtc=1001&locale=es&cache=false | ||
| - | width=100% | ||
| - | height=620 | ||
| - | name=myframe | ||
| - | </iframe></center> | ||
| - | }} | ||
| - | |||
| - | }} | ||
| [[Categoría: Matemáticas]][[Categoría: Álgebra]] | [[Categoría: Matemáticas]][[Categoría: Álgebra]] | ||
Revisión de 08:59 15 ene 2009
| Enlaces internos | Para repasar | Enlaces externos | 
| Indice CD Alumno 07 Resueltos 07 Descartes Manual Casio | Ecuaciones, sistemas e inecuaciones | WIRIS Calculadora | 
| Tabla de contenidos | 
Ecuación de segundo grado
Una ecuación de segundo grado con una incógnita,  , es aquella que se puede expresar de la forma:
, es aquella que se puede expresar de la forma:

que llamaremos forma general.
Ejemplo: Ecuación de segundo grado
Pasa a forma general la ecuación:

Para ponerla en forma general, pasaremos todos los términos al miembro de la izquierda:

Agrupando términos semejantes:

Resolución de la ecuación de segundo grado
Fórmula de la ecuación de segundo grado
Las soluciones de la ecuación de segundo grado son:

donde el signo  significa que una solución se obtiene con el signo
 significa que una solución se obtiene con el signo  y otra con el signo
 y otra con el signo  .
.
1. Se divide la ecuación por  :
:

2. Se multiplica y divide por  el coeficiente de la
 el coeficiente de la  :
:

3. Se suma alos dos miembros de la igualdad  :
:

4. Se pasa restando a la derecha  :
:

5. Observando que el lado izquierdo es el desarrollo de  :
:

6. Se extrae la raíz cuadrada en ambos miembros:

7. Se despeja x:

8. Se simplifica la expresión:

Ejemplo: Resolución de la ecuación de segundo grado
- Ejemplos de ecuaciones de segundo grado resueltas.
Pulsa "Inicio" para ver otros ejemplos:
| Actividad Interactiva: Resolución de una ecuación de segundo grado 
Actividad 1: Resuelve las siguientes ecuaciones de segundo grado. Actividad: 
 | 
Discriminante de una ecuación de segundo grado
Llamamos discriminante de una ecuación de segundo grado a:

por tanto:
- Si  la ecuación no tiene solución. la ecuación no tiene solución.
- Si  la ecuación tiene dos soluciones. la ecuación tiene dos soluciones.
- Si  la ecuación tiene una solución (doble). la ecuación tiene una solución (doble).
| Actividades Interactivas: Discriminante de una ecuación de segundo grado 
Actividad 1: Actividad para, dadas unas ecuaciones de segundo grado, deducir los parámetros a, b, c, discriminante y el valor de las raíces-solución. 
Actividad 2: Calcula el discriminante de las siguientes ecuaciones de segundo grado. Actividad: 
 | 
Ecuaciones de segundo grado incompletas
Una ecuación de segundo grado  es incompleta, si ocurre uno de los siguientes casos:
 es incompleta, si ocurre uno de los siguientes casos:
 : :  
- En este caso las soluciones se obtienen despejando x:

 : :  
- En este caso, sacando factor común e igualando a cero cada factor:

Ejemplo: Ecuaciones de segundo grado incompletas
- Ejemplos de ecuaciones de segundo grado incompletas resueltas.
Pulsa "INICIO" para ver otros ejemplos:
- Caso 1:  : :  
- Caso 2:  : :  


