Plantilla:Transformaciones elementales de funciones (1ºBach)
De Wikipedia
(Diferencia entre revisiones)
												
			
			| Revisión de 20:02 12 dic 2016 Coordinador (Discusión | contribuciones) (→Dilatación y contracción) ← Ir a diferencia anterior | Revisión de 20:04 12 dic 2016 Coordinador (Discusión | contribuciones) (→Dilatación y contracción) Ir a siguiente diferencia → | ||
| Línea 26: | Línea 26: | ||
| '''Vertical:''' | '''Vertical:''' | ||
| - | *Si <math>k>1\;</math>, la gráfica de la función <math>k \cdot f(x)\;</math> es una '''dilatación''' o estiramiento vertical de la gráfica de <math>f(x)\;</math>. | + | *Si <math>k>1\;</math>, la gráfica de la función <math>k \cdot f(x)\;</math> es una '''dilatación vertical''' de la gráfica de <math>f(x)\;</math>. | 
| - | *Si <math>0<k<1\;</math>, la gráfica de la función <math>k \cdot f(x)\;</math> es una '''contracción''' o achatamiento vertical de la gráfica de <math>f(x)\;</math>. | + | *Si <math>0<k<1\;</math>, la gráfica de la función <math>k \cdot f(x)\;</math> es una '''contracción vertical''' vertical de la gráfica de <math>f(x)\;</math>. | 
| '''Horizontal:''' | '''Horizontal:''' | ||
| - | *Si <math>k>1\;</math>, la gráfica de la función <math>f(k \cdot x)\;</math> es una '''contracción''' o estrechamiento horizontal de la gráfica de <math>f(x)\;</math>. | + | *Si <math>k>1\;</math>, la gráfica de la función <math>f(k \cdot x)\;</math> es una '''contracción horizontal''' de la gráfica de <math>f(x)\;</math>. | 
| - | *Si <math>0<k<1\;</math>, la gráfica de la función <math>f(k \cdot x)\;</math> es una '''dilatación''' o ensanchamiento horizontal de la gráfica de <math>f(x)\;</math>. | + | *Si <math>0<k<1\;</math>, la gráfica de la función <math>f(k \cdot x)\;</math> es una '''dilatación horizontal''' de la gráfica de <math>f(x)\;</math>. | 
| }} | }} | ||
| {{p}} | {{p}} | ||
Revisión de 20:04 12 dic 2016
| Tabla de contenidos | 
Traslación vertical y horizontal
- Traslación vertical: Sea  una función y una función y un número real, entonces la gráfica de la función un número real, entonces la gráfica de la función se obtiene a partir de la de se obtiene a partir de la de desplazándola desplazándola unidades hacia arriba y la de unidades hacia arriba y la de desplazándola desplazándola unidades hacia abajo. unidades hacia abajo.
- Traslación horizontal: Sea  una función y una función y un número real, entonces la gráfica de la función un número real, entonces la gráfica de la función se obtiene a partir de la de se obtiene a partir de la de desplazándola desplazándola unidades hacia la izquierda y la de unidades hacia la izquierda y la de desplazándola desplazándola unidades hacia la derecha. unidades hacia la derecha.
 Traslaciones horizontales y verticales     Descripción:
   Traslaciones horizontales y verticales     Descripción: En esta escena podrás ver la representación conjunta una función y su transformada por traslación horizontal o vertical.
Simetrías
- Simetría respecto del eje X: Las gráficas de las funciones  y y son simétricas respecto del eje de abscisas. son simétricas respecto del eje de abscisas.
- Simetría respecto del eje Y: Las gráficas de las funciones  y y son simétricas respecto del eje de ordenadas. son simétricas respecto del eje de ordenadas.
- Simetría respecto del origen: Las gráficas de las funciones  y y son simétricas respecto del origen de coordenadas. son simétricas respecto del origen de coordenadas.
 Simetrías     Descripción:
   Simetrías     Descripción: En esta escena podrás ver la representación conjunta una función y su simétrica.
Dilatación y contracción
Vertical:
- Si  , la gráfica de la función , la gráfica de la función es una dilatación vertical de la gráfica de es una dilatación vertical de la gráfica de . .
- Si  , la gráfica de la función , la gráfica de la función es una contracción vertical vertical de la gráfica de es una contracción vertical vertical de la gráfica de . .
Horizontal:
- Si  , la gráfica de la función , la gráfica de la función es una contracción horizontal de la gráfica de es una contracción horizontal de la gráfica de . .
- Si  , la gráfica de la función , la gráfica de la función es una dilatación horizontal de la gráfica de es una dilatación horizontal de la gráfica de . .
 Dilataciones y contracciones     Descripción:
   Dilataciones y contracciones     Descripción: En esta escena podrás ver la representación conjunta una función y su transformada por dilatación o contracción.
Actividades
 Transformaciones de funciones     Descripción:
   Transformaciones de funciones     Descripción: En esta escena podrás practicar las transformaciones de funciones. Se te propondrán algunos ejercicios.

