Funciones arco (1ºBach)
De Wikipedia
(Diferencia entre revisiones)
												
			
			| Revisión de 14:30 13 dic 2016 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior | Revisión de 14:32 13 dic 2016 Coordinador (Discusión | contribuciones) (→Función arcoseno) Ir a siguiente diferencia → | ||
| Línea 11: | Línea 11: | ||
| {{p}} | {{p}} | ||
| ==Función arcoseno== | ==Función arcoseno== | ||
| + | {{Tabla75|celda2=[[Imagen:arcseno.jpg|thumb|Funciones seno y arcoseno. Observa la simetría entre ambas]] | ||
| + | |celda1= | ||
| La función seno no es inyectiva, pero si restringimos su dominio al intervalo <math>[-\cfrac{\pi}{2},\cfrac{\pi}{2}\,]</math> entonces es biyectiva y tiene inversa. A su inversa la llamaremos '''arcoseno'''. | La función seno no es inyectiva, pero si restringimos su dominio al intervalo <math>[-\cfrac{\pi}{2},\cfrac{\pi}{2}\,]</math> entonces es biyectiva y tiene inversa. A su inversa la llamaremos '''arcoseno'''. | ||
| - | + | {{p}} | |
| {{Caja_Amarilla|texto=La función '''arcoseno''' se define como | {{Caja_Amarilla|texto=La función '''arcoseno''' se define como | ||
| Línea 26: | Línea 28: | ||
| donde <math>arcsen(x)\;</math> es el ángulo comprendido entre <math>-\cfrac{\pi}{2}</math> y <math>\cfrac{\pi}{2}</math> tal que su seno es igual a <math>x\;</math> | donde <math>arcsen(x)\;</math> es el ángulo comprendido entre <math>-\cfrac{\pi}{2}</math> y <math>\cfrac{\pi}{2}</math> tal que su seno es igual a <math>x\;</math> | ||
| }} | }} | ||
| - | + | }} | |
| [[Categoría: Matemáticas]][[Categoría: Funciones]] | [[Categoría: Matemáticas]][[Categoría: Funciones]] | ||
Revisión de 14:32 13 dic 2016
Menú: 
| Enlaces internos | Para repasar o ampliar | Enlaces externos | 
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras | 
| Tabla de contenidos | 
(Pág. 261)
Función arcoseno
| La función seno no es inyectiva, pero si restringimos su dominio al intervalo ![[-\cfrac{\pi}{2},\cfrac{\pi}{2}\,]](/wikipedia/images/math/c/5/b/c5b617e52171199a746c52e69ba9da9b.png) entonces es biyectiva y tiene inversa. A su inversa la llamaremos arcoseno. La función arcoseno se define como ![\begin{matrix} f:[-1,1] \rightarrow [-\cfrac{\pi}{2},\cfrac{\pi}{2}\,]  \\  \, \qquad \qquad \qquad \ \ \ x \ \ \  \rightarrow \ \ \ \ y=arcsen(x) \end{matrix}](/wikipedia/images/math/c/2/1/c21cb86da8f59e167fb77175a689f552.png) donde  | 
 es el ángulo comprendido entre
 es el ángulo comprendido entre  y
 y  tal que su seno es igual a
 tal que su seno es igual a  



