Plantilla:Reglas de derivación (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 18:22 2 may 2017
Coordinador (Discusión | contribuciones)
(Derivada de operaciones con funciones)
← Ir a diferencia anterior
Revisión de 09:51 3 may 2017
Coordinador (Discusión | contribuciones)
(Derivada de operaciones con funciones)
Ir a siguiente diferencia →
Línea 82: Línea 82:
{{p}} {{p}}
---- ----
 +}}
 +
 +{{p}}
 +{{Video_enlace2
 +|titulo1=Función derivada primera de otra función. Reglas de derivación
 +|duracion=9'22"
 +|sinopsis=Definición de la función derivada de una función. Las reglas de derivación nos permiten calcular derivadas sin calcular límites.
 +|url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/04-derivabilidad-de-funciones-2/08-funcion-derivada-primera-de-una-funcion-reglas-de-derivacion-2#.WGOVD0Z9Vko
 +}}
 +{{Video_enlace2
 +|titulo1=Derivación de funciones compuestas
 +|duracion=6'14"
 +|sinopsis=Regla de la cadena
 +|url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/04-derivabilidad-de-funciones-2/18-derivacion-de-funciones-compuestas-2#.WGOaiEZ9Vko
 +}}
 +{{p}}
 +{{Video_enlace_unicoos
 +|titulo1=Ejemplo: Continuidad y derivabilidad
 +|duracion=5'45"
 +|sinopsis=Estudio de la continuidad y de la derivabilidad de una función.
 +|url1=http://www.unicoos.com/video/matematicas/1-bachiller/aplicaciones-de-la-derivada/derivabilidad/derivabilidad-y-continuidad-de-una-funcion
}} }}
{{p}} {{p}}
Línea 122: Línea 143:
|sinopsis=Ejemplos de cálculo de la derivada de una función usando la regla de la cadena. |sinopsis=Ejemplos de cálculo de la derivada de una función usando la regla de la cadena.
|url1=https://www.youtube.com/watch?v=pz8yjIEL6jgcadena |url1=https://www.youtube.com/watch?v=pz8yjIEL6jgcadena
 +}}
 +{{p}}
 +{{Video_enlace2
 +|titulo1=Ejemplos
 +|duracion=15'36"
 +|sinopsis=:22 ejemplos sencillos de aplicación de las reglas de derivación.
 +|url1=http://www.matematicasbachiller.com/videos/cdiferencial/df_t_04/vdf0408_01.html
}} }}
}} }}
Línea 143: Línea 171:
}} }}
-{{p}} 
-{{Video_enlace2 
-|titulo1=Función derivada primera de otra función. Reglas de derivación 
-|duracion=9'22" 
-|sinopsis=Definición de la función derivada de una función. Las reglas de derivación nos permiten calcular derivadas sin calcular límites. 
-|url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/04-derivabilidad-de-funciones-2/08-funcion-derivada-primera-de-una-funcion-reglas-de-derivacion-2#.WGOVD0Z9Vko 
-}} 
-{{p}} 
-{{Video_enlace2 
-|titulo1=Ejemplos 
-|duracion=15'36" 
-|sinopsis=:22 ejemplos sencillos de aplicación de las reglas de derivación. 
-|url1=http://www.matematicasbachiller.com/videos/cdiferencial/df_t_04/vdf0408_01.html 
-}} 
-{{Video_enlace2 
-|titulo1=Derivación de funciones compuestas 
-|duracion=6'14" 
-|sinopsis=Regla de la cadena 
-|url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/04-derivabilidad-de-funciones-2/18-derivacion-de-funciones-compuestas-2#.WGOaiEZ9Vko 
-}} 
-{{p}} 
-{{Video_enlace_unicoos 
-|titulo1=Ejemplo: Continuidad y derivabilidad 
-|duracion=5'45" 
-|sinopsis=Estudio de la continuidad y de la derivabilidad de una función. 
-|url1=http://www.unicoos.com/video/matematicas/1-bachiller/aplicaciones-de-la-derivada/derivabilidad/derivabilidad-y-continuidad-de-una-funcion 
-}} 
-{{p}} 

Revisión de 09:51 3 may 2017

Hemos visto en el apartado anterior como se obtiene la función derivada de una función. Es un proceso largo y pesado. Existen una serie de reglas, demostradas por medio de ese procedimiento, que nos permitirán aliviar el trabajo del cálculo de la función derivada.

Derivada de las funciones elementales

ejercicio

Reglas de derivación


  • Función constante:
D(k)=0 \, , \ \forall k \in \mathbb{R}
  • Función identidad:
D(x)=1\;
  • Función potencia:
D(x^n)=n \, x^{n-1}\;

  • Funciones trigonométricas directas:
D(sen\,x)=cos \, x
D(cos\,x)=-sen \, x
D(tg\,x)=1+tg^2\,x=\cfrac{1}{cos^2 x}
  • Funciones trigonométricas recíprocas:
D(arc\,sen\,x)=\cfrac{1}{\sqrt{1-x^2}}
D(arc\,cos\,x)=\cfrac{-1}{\sqrt{1-x^2}}
D(arc\,tg\,x)=\cfrac{1}{1+x^2}
  • Funciones exponenciales:
D(e^x)=e^x\;
D(a^x)=a^x \cdot ln\,a

  • Funciones logarítmicas:
D(ln\,x)=\cfrac{1}{x}
D(log_a\,x)=\cfrac{1}{x} \cdot \cfrac{1}{ln\,a}

Derivada de operaciones con funciones

ejercicio

Reglas de derivación


  • Producto de una función por una constante:
D[k\,f(x)]=k\,f'(x)\;


  • Suma de funciones:
D[f(x)+g(x)]=f'(x)+g'(x)\;


  • Producto de funciones:
D[f(x) \cdot g(x)]=f'(x) \cdot g(x) + f(x) \cdot g'(x)\;


  • Cociente de funciones:
D \left[ \cfrac{f(x)}{g(x)} \right]=\cfrac{f'(x) \cdot g(x) + f(x) \cdot g'(x)}{g(x)^2}\;


  • Composición de funciones (Regla de la cadena):
D\{g[f(x)]\}=g'[f(x)] \cdot f'(x)\;



ejercicio

Ejemplos: Reglas de derivación


ejercicio

Ejercicios resueltos: Reglas de derivación


Halla la derivada de las siguientes funciones:

  1. f(x)=2x^3-5x^2+3x-2\;
  2. g(x)=\sqrt{2x} + \sqrt[3]{5x^2}
  3. h(x)=\cfrac{1}{x \sqrt{x}}
  4. i(x)=2^{3x}\;
  5. j(x)=\cfrac{x^3}{x^2+1}
  6. k(x)=arc \, tg \sqrt{x^2+1}
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda