Plantilla:Operaciones con polinomios

De Wikipedia

(Diferencia entre revisiones)
Revisión de 13:29 25 oct 2016
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)

Línea 1: Línea 1:
 +===Reducción de polinomios===
 +{{Reducción de polinomios}}
 +{{p}}
===Suma y resta de polinomios=== ===Suma y resta de polinomios===
-Para sumar o restar polinomios, sumaremos o restaremos los monomios semejantes de ambos.+{{Suma y resta de polinomios}}
{{p}} {{p}}
-{{Ejemplo 
-|titulo=Ejemplos: ''Suma y resta de polinomios'' 
-|enunciado= 
-Calcula:  
-:a) <math>(4x^4 - 2x^3 + 3x^2 - 2x + 5 ) + ( 5x^3 - x^2 + 2x ) \;\!</math> 
-:b) <math>(4x^4 - 2x^3 + 3x^2 - 2x + 5 ) - ( 5x^3 - x^2 + 2x ) \;\!</math> 
- 
-|sol= 
-a) <math>(4x^4 - 2x^3 + 3x^2 - 2x + 5 ) + ( 5x^3 - x^2 + 2x ) = 4x^4+3x^3+2x^2+5 \;\!</math> 
-b) <math>(4x^4 - 2x^3 + 3x^2 - 2x + 5 ) - ( 5x^3 - x^2 + 2x ) = 4x^4-7x^3+4x^2-4x+5 \;\!</math> 
-}} 
-{{p}} 
- 
===Producto de un monomio por un polinomio=== ===Producto de un monomio por un polinomio===
-Para multiplicar un monomio por un polinomio, se multiplica el monomio por cada término del polinomio y se suman los resultados.+{{producto monomio polinomio}}
-{{p}}+
-{{Ejemplo+
-|titulo=Ejemplo: ''Producto de un monomio por un polinomio''+
-|enunciado=+
-Calcula el producto: <math>(4x^4 - 2x^3 + 3x^2 - 2x + 5 ) \cdot 2x^2 \;\!</math>+
-|sol=+
-<math>(4x^4 - 2x^3 + 3x^2 - 2x + 5 ) \cdot 2x^2 = 8x^6-4x^5+6x^4-4x^3+10x^2 \;\!</math>+
-}}+
{{p}} {{p}}
===Producto de polinomios=== ===Producto de polinomios===
-Para multiplicar dos polinomios, se multiplica cada monomio de uno de sus factores por todos y cada uno de los monomios del otro factor y, después, se suman los monomios semejantes obtenidos.+{{Producto de polinomios}}
-{{p}}+
-{{Ejemplo+
-|titulo=Ejemplo: ''Producto de polinomios''+
-|enunciado=+
-Calcula el producto: <math>(2x^3 - 3x^2 +1) \cdot (2x-3)\;\!</math>+
- +
-|sol=+
-<math>(2x^3 - 3x^2 +1) \cdot (2x-3) = 4x^4-6x^3-6x^3+9x^2+2x-3=4x^4-12x^3+9x^2+2x-3 \;\!</math>+
-}}+
-{{p}}+
-{{wolfram desplegable|titulo=Operaciones con polinomios|contenido=+
-{{wolfram+
-|titulo=Actividad: ''Operaciones con polinomios''+
-|cuerpo=+
-{{ejercicio_cuerpo+
-|enunciado=+
-Haz las siguientes operaciones con polinomios:+
- +
-:a) <math>(3x^3-5x^2-3x+2)+(x^3-4x-1)-(2x^2-x-2)\!</math>+
-:b) <math>(3x^3-5x^2-3x+2) \cdot 2x^2\!</math>+
-:c) <math>(2x^2+2x-3) \cdot (2x-5)\!</math>+
-{{p}}+
-|sol=+
-Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:+
- +
-a) {{consulta|texto=expand (3x^3-5x^2-3x+2)+(x^3-4x-1)-(2x^2-x-2)}}+
-b) {{consulta|texto=expand (3x^3-5x^2-3x+2)*2x^2}}+
-c) {{consulta|texto=expand (2x^2+2x-3)*(2x-5)}}+
- +
-{{widget generico}}+
-}}+
-}}+
-}}+
-{{p}}+
-===Sacar factor común===+
-La propiedad distributiva sirve para simplificar expresiones '''sacando factor común'''. Veamos un ejemplo+
-{{p}}+
-{{Ejemplo+
-|titulo=Ejemplo: ''Sacar factor común''+
-|enunciado=+
-Saca factor común en la expresión <math>16xyz-24xz+4x\;\!</math>+
-|sol=+
-El factor común, que se repite en los tres sumandos, es <math>4x\,\!</math>. Ese factor lo multiplicamos por un paréntesis que contenga a otros tres sumandos. Cada uno de los sumandos del paréntesis deberá ser tal, que al multiplicarlo por el factor común <math>4x\,\!</math>, dé como resultado cada uno de los sumandos de la expresión de partida. En nuestro caso:{{p}}+
-<center><math>16xyz-24xz+4x\;\!=</math>{{p}}+
-<math>(4x) \cdot 4yz - (4x) \cdot 6z + (4x) \cdot 1=\;\!</math>{{p}}+
-<math>4x \cdot (4yz-6z+1)</math></center>+
-}}+
-{{p}}+
-{{wolfram desplegable|titulo=Sacar factor común|contenido=+
-{{wolfram+
-|titulo=Actividad: ''Sacar factor común''+
-|cuerpo=+
-{{ejercicio_cuerpo+
-|enunciado=+
-:Saca factor común:+
- +
-:a) <math>3x^2yz-6xy^2z+9xyz\!</math>+
-:b) <math>12ab^5-6a^4b^3\!</math>+
{{p}} {{p}}
-|sol= 
-Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: 
- 
-a) {{consulta|texto=factor 3x^2*y*z-6x*y^2*z+9x*y*z}} 
-b) {{consulta|texto=factor 12a*b^5-6a^4*b^3}} 
- 
-{{widget generico}} 
-}} 
-}} 
-}} 

Revisión actual

Tabla de contenidos

Reducción de polinomios

ejercicio

Procedimiento


Para reducir un polinomio sumaremos o restaremos los monomios semejantes que aparezcan en su expresión. Los monomios resultantes se suelen ordenar de mayor a menor grado.

ejercicio

Ejemplos: Reducción de polinomios


Reduce:

a) 3x - 2 - 5x + 5 \;\!
b) 3x^2 - 2x - x^2 + 5 \;\!

Suma y resta de polinomios

ejercicio

Procedimiento


Para sumar o restar polinomios, sumaremos o restaremos los monomios semejantes de ambos.

ejercicio

Ejemplos: Suma y resta de polinomios


Calcula:

a) (3x^2 - 2x + 5 ) + ( 5x^3 - x^2 + 2x ) \;\!
b) (3x^2 - 2x + 5 ) - ( x^2 + 2x) \;\!

Producto de un monomio por un polinomio

ejercicio

Procedimiento


Para multiplicar un monomio por un polinomio, se aplica la propiedad distributiva, es decir, se multiplica el monomio por cada término del polinomio y se suman los resultados.

ejercicio

Ejemplo: Producto de un monomio por un polinomio


Calcula el producto: (3x^2 - 2x + 5 ) \cdot 2x^2  \;\!

Producto de polinomios

ejercicio

Procedimiento


Para multiplicar dos polinomios, se multiplica cada monomio de uno de sus factores por todos y cada uno de los monomios del otro factor y, después, se suman los monomios semejantes obtenidos.

ejercicio

Ejemplo: Producto de polinomios


Calcula el producto: (2x^3 - 3x^2 +1) \cdot (2x-3)\;\!

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda