Plantilla:Radicales (ampliación)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 10:28 13 ago 2016
Coordinador (Discusión | contribuciones)
(Caso 3: Denominador con sumas y restas de raíces)
← Ir a diferencia anterior
Revisión de 17:35 8 sep 2016
Coordinador (Discusión | contribuciones)
(Introducción de factores)
Ir a siguiente diferencia →
Línea 45: Línea 45:
}} }}
{{p}} {{p}}
-{{AI2|titulo=Actividad Interactiva: ''Introducción y extracción de factores de un radical''|cuerpo=+{{AI_enlace|titulo1=Introducción y extracción de factores de un radical
-{{ai_cuerpo+|descripcion=Pulsa el botón EJERCICIO y verás el enunciado; hazlo en tu cuaderno e introduce la solución con la escena, luego pulsa el botón SOLUCIÓN para ver si lo has hecho bien.
-|enunciado={{b4}} {{b4}}Introduce y extráe factores de radicales.+|url1=http://maralboran.org/web_ma/descartes/3_eso/Radicales/radicales3_3.html
-|actividad={{b4}} {{b4}}Pulsa el botón EJERCICIO y verás el enunciado; hazlo en tu cuaderno e introduce la solución con la escena, luego pulsa el botón SOLUCIÓN para ver si lo has hecho bien. +
- +
-<center><iframe>+
-url=http://maralboran.org/web_ma/descartes/3_eso/Radicales/radicales3_3.html+
-width=700+
-height=240+
-name=myframe+
-</iframe></center>+
-<center>[http://maralboran.org/web_ma/descartes/3_eso/Radicales/radicales3_3.html '''Click''' aquí si no se ve bien la escena]</center>+
-}}+
}} }}
{{p}} {{p}}

Revisión de 17:35 8 sep 2016

Tabla de contenidos

Extracción e introducción de factores en un radical

Extracción de factores

Para extaer factores de un radical se divide el exponente entre el índice y se saca el factor elevado al cociente de la división quedando ese factor elevado al resto.

ejercicio

Ejemplo: Extracción de factores de un radical


Extrae todo lo que se pueda de este radical: \sqrt[3]{6000}

Introducción de factores

Para introducir un factor dentro de un radical, éste se eleva al índice del radical y el resultado se multiplica por el radicando del radical.

ejercicio

Ejemplo: Introducción de factores en un radical


Introduce los factores dentro del radical: 10 \sqrt[3]{6}

Suma y resta de radicales con el mismo índice y distinto radicando

Si tienen el mismo índice pero distinto radicando, a veces, podemos extraer factores del radical y dejarlos con el mismo radicando.

ejercicio

Ejemplo: Suma y resta de radicales con el mismo índice y distinto radicando


Resta los siguientes radicales: \sqrt{48}-\sqrt{75}

wolfram

Actividad: Suma y resta de radicales con el mismo índice y distinto radicando


Simplifica \sqrt[4]{3} - \sqrt[4]{243}

ejercicio

Actividad Interactiva: Suma y resta de radicales


         Suma y resta radicales con el mismo índice y distinto radicando.

Producto y cocientes de radicales de distinto índice

Para multiplicar o dividir radicales de distinto índice, primero se reducen a índice común y luego se multiplican o dividen los radicandos.

ejercicio

Ejemplo: Producto y cocientes de radicales de distinto índice


Reduce a un solo radical \sqrt[3]{10} \cdot \sqrt[4]{5}:\sqrt{8}

Racionalización de denominadores

Se llama racionalización al procedimiento por el cual a partir de una fracción con raíces en el denominador obtenemos otra fracción equivalente sin raíces en el denominador

Caso 1: Denominador con raíces cuadradas

Para racionalizar uno radical de este tipo se debe multiplicar el numerador y el denominador de la fracción por el denominador de la misma.

ejercicio

Ejemplo: Caso 1: Denominador con raíces cuadradas


Racionalizar \frac{{6}}{\sqrt{2}}

Caso 2: Denominador con otras raíces

En este caso, los exponentes del radicando del radical por el que se deben multiplicar el numerador y denominador de la fracción será la diferencia entre los exponentes actuales y el índice (o múltiplo del indice más cercano) del radical.

ejercicio

Ejemplo: Caso 2: Denominador con otras raíces


Racionalizar \frac{{2}}{\sqrt[5]{a^3b^4}}

Caso 3: Denominador con sumas y restas de raíces

Para este último caso, se multiplica y divide por la expresión conjugada del denominador (solo se le cambia el segundo signo de la expresión)

ejercicio

Ejemplo: Caso 3: Denominador con sumas y restas de raíces


Racionalizar \frac{{2}}{\sqrt{2}+\sqrt{3}}
wolfram

Actividad: Racionalización


Racionaliza \frac{{5}}{\sqrt{3}-\sqrt{5}}


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda