Expresión analítica de una función (3ºESO Académicas)
De Wikipedia
(Diferencia entre revisiones)
												
			
			| Revisión de 17:19 5 nov 2016 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior | Revisión de 17:23 5 nov 2016 Coordinador (Discusión | contribuciones) (→Expresión analítica de una función) Ir a siguiente diferencia → | ||
| Línea 10: | Línea 10: | ||
| ==Expresión analítica de una función== | ==Expresión analítica de una función== | ||
| {{Wolfram: Tabla de valores de una función}} | {{Wolfram: Tabla de valores de una función}} | ||
| + | {{p}} | ||
| + | {{Wolfram: Dominio e imagen}} | ||
| + | {{p}} | ||
| + | ===Determinación del dominio de una función=== | ||
| + | {{Determinación del dominio de una función}} | ||
| + | {{p}} | ||
| ===Ejercicios propuestos=== | ===Ejercicios propuestos=== | ||
| {{ejercicio | {{ejercicio | ||
Revisión de 17:23 5 nov 2016
Menú: 
| Enlaces internos | Para repasar | Para ampliar | Enlaces externos | 
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadora | 
| Tabla de contenidos | 
(Pág. 152)
Expresión analítica de una función
| Actividad: Expresión analítica de una función Dadas las funciones  
 Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: 
 
 
 | 
| Actividad: Dominio e imagen de una función 
 Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: 
 | 
Determinación del dominio de una función
El dominio de una función puede estar determinado o limitado por diferentes razones:
- Imposibilidad de realizar alguna operación con ciertos valores de  (Por ejemplo, si en la expresión analítica aparecen denominadores que se anulan o radicandos que toman valores negativos) (Por ejemplo, si en la expresión analítica aparecen denominadores que se anulan o radicandos que toman valores negativos)
- Contexto en el que se estudia la función (Por ejemplo, una función que relaciona lado y área de una figura plana, el lado no puede tomar valores negativos)
- Por voluntad de quien propone la función (A veces nos puede interesar estudiar sólo un trozo de la función).
Ejemplos: Dominio de una función dada por una expresión analítica
- Halla el dominio de las funciones:
- a) ![y=x-3 \ , \quad x \in [-1,1]\;\!](/wikipedia/images/math/b/2/f/b2f9332046e953e44d840dc3a97e95ea.png)  
 
- a) 
- b)   
 
- b) 
- c)   
 
- c) 
- d)  (Área de un cuadrado de lado (Área de un cuadrado de lado ) )
 
- d) 
Solución:
- a) Su dominio es ![[-1,1]\;\!](/wikipedia/images/math/d/e/f/defe3e8e42c39a844e648621afe1619e.png) , por voluntad del que ha definido la función, ya que, en principio, cualquier valor de , por voluntad del que ha definido la función, ya que, en principio, cualquier valor de da un valor de da un valor de válido. válido.
- b) Su dominio es  , porque el denominador no puede tomar el valor cero, ya que imposibilitaría hacer la división. , porque el denominador no puede tomar el valor cero, ya que imposibilitaría hacer la división.
- c) Su dominio es  , porque el radicando no puede ser negativo para poder hallar la raíz. , porque el radicando no puede ser negativo para poder hallar la raíz.
- d) Su dominio es  , porque el lado de un cuadrado sólo puede tomar valores positivos , porque el lado de un cuadrado sólo puede tomar valores positivos
 Tutorial 1a (8´10")     Sinopsis:
 Tutorial 1a (8´10")     Sinopsis: Intervalos. Notación.
 Tutorial 1b (9´45")     Sinopsis:
 Tutorial 1b (9´45")     Sinopsis: Dominio de una función.
 Tutorial 1c (6´01")     Sinopsis:
 Tutorial 1c (6´01")     Sinopsis: Rango o imagen de una función.
 Tutorial 2 (13´00")     Sinopsis:
 Tutorial 2 (13´00")     Sinopsis:Conceptos de dominio y rango de una función. Ejemplos
 Tutorial 3 (43'57")     Sinopsis:
 Tutorial 3 (43'57")     Sinopsis: Dominio y rango de una función. Ejemplos.
 Ejercicio 1 (0'48")     Sinopsis:
 Ejercicio 1 (0'48")     Sinopsis:Halla el dominio de  .
.
 Ejercicio 2 (1'34")     Sinopsis:
 Ejercicio 2 (1'34")     Sinopsis:Halla el dominio de  .
.
 Ejercicio 3 (1'11")     Sinopsis:
 Ejercicio 3 (1'11")     Sinopsis:Halla el dominio de  .
.
 Ejercicio 4 (1'14")     Sinopsis:
 Ejercicio 4 (1'14")     Sinopsis:Halla el dominio de  .
.
 Ejercicio 5 (1'02")     Sinopsis:
 Ejercicio 5 (1'02")     Sinopsis:Halla el dominio de  .
.
 Ejercicio 6 (1'52")     Sinopsis:
 Ejercicio 6 (1'52")     Sinopsis: Halla el dominio de  .
.
Dominio de una función dada por su expresión analítica.
Ejercicios propuestos
| Ejercicios propuestos: Expresión analítica de una función | 




 .
.





