Distribuciones muestrales. Teorema central del límite
De Wikipedia
(Diferencia entre revisiones)
Revisión de 19:19 6 jul 2007 Juanmf (Discusión | contribuciones) (→Distribución muestral de las proporciones) ← Ir a diferencia anterior |
Revisión de 19:23 6 jul 2007 Juanmf (Discusión | contribuciones) (→Distribución muestral de las proporciones) Ir a siguiente diferencia → |
||
Línea 20: | Línea 20: | ||
Calculamos su esperanza matemática y la varianza: | Calculamos su esperanza matemática y la varianza: | ||
- | + | {{Caja|contenido= | |
+ | <center> | ||
<math> E( \widehat{p})= 0. \frac{9} {16} + 0.5. \frac{6} {16} + 1. \frac{1} {16} = \frac{1} {4}= p | <math> E( \widehat{p})= 0. \frac{9} {16} + 0.5. \frac{6} {16} + 1. \frac{1} {16} = \frac{1} {4}= p | ||
+ | </math> | ||
<br> | <br> | ||
- | + | <math> | |
- | V( \widehat{p})= \frac{0^2. \frac{9} {16} + 0.5^2. \frac{6} {16} + 1^2. \frac{1} {16}} {2}- ( \frac{1} {4})^2 | + | V( \widehat{p})= 0^2. \frac{9} {16} + 0.5^2. \frac{6} {16} + 1^2. \frac{1} {16} - ( \frac{1} {4})^2 |
</math> | </math> | ||
+ | </center> | ||
+ | }} | ||
==Distribución muestral de las medias== | ==Distribución muestral de las medias== | ||
==Teorema central del límite== | ==Teorema central del límite== |
Revisión de 19:23 6 jul 2007
Menú:
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio Indice Estadistica | Inferencia | WIRIS Geogebra Calculadora |
Distribución muestral de las proporciones
Vamos a obtener experimentalmente la distribución de las proporciones muestrales. Para ello consideremos el conjunto de figuras:

La proporción poblacional de triángulos es 1/4.
Consideremos todas las muestras aleatorias simples (con reemplazamiento) de tamaño 2, y construimos la distribución de probabilidad de la proporción muestral:

Calculamos su esperanza matemática y la varianza:
![]() ![]() |