Funciones exponenciales (1ºBach)
De Wikipedia
Menú:
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Función exponencial de base a
Sea un número real. Se define la función exponencial de base
como:

La función exponencial de base e (número e) es de especial importancia en matemáticas y se denomina simplementre función exponencial, sin hacer mención a la base.
Actividad Interactiva: Función exponencial
Actividad 1. Representación gráfica de distintas funciones exponenciales.
Actividad: En esta escena tienes las gráfica de las funciones: a)
![]() ![]() ![]() ![]() Comprueba en la escena anterior las siguientes propiedades:
|
Propiedades
Las funciones exponenciales de base cumplen las siguientes propiedades:
- Son continuas en
.
- Pasan por
y
.
- Si
son crecientes y si
son decrecientes. Su crecicmiento supera al de cualquier función potencia.
- Son positivas y nunca se anulan (su gráfica está por encima del eje X).
Calculadora
Exponencial de base 10
Calculadora: Exponencial de base 10 |
Exponencial de base e
Calculadora: Exponencial de base e |
Crecimiento exponencial
El término crecimiento exponencial se aplica generalmente a una magnitud que crece con el tiempo
de acuerdo con la ecuación:

Ejemplos:
Los siguientes fenómenos siguen un crecimiento exponencial:
- El número de células de un feto mientras se desarrolla en el útero materno.
- En una economía sin trastornos, los precios crecen exponencialmente, donde la tasa coincide con el índice de inflación.
- El número de contraseñas posibles con n dígitos crece exponencialmente con n.
- El número de bacterias que se reproducen por mitosis.