Funciones exponenciales (1ºBach)
De Wikipedia
Menú:
| Enlaces internos | Para repasar o ampliar | Enlaces externos |
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Función exponencial de base a
Sea
un número real. Se define la función exponencial de base
como:

La función exponencial de base e (número e) es de especial importancia en matemáticas y se denomina simplementre función exponencial, sin hacer mención a la base.
|
Actividad Interactiva: Función exponencial
Actividad 1. Representación gráfica de distintas funciones exponenciales.
Actividad: En esta escena tienes las gráfica de las funciones: a)
(en verde); b) (en amarillo); c) (en rojo); d) (en turquesa)Comprueba en la escena anterior las siguientes propiedades:
|
Propiedades
Las funciones exponenciales de base
cumplen las siguientes propiedades:
- Son continuas en
.
- Pasan por
y
.
- Si
son crecientes y si
son decrecientes. Su crecicmiento supera al de cualquier función potencia.
- Son positivas y nunca se anulan (su gráfica está por encima del eje X).
Calculadora
Exponencial de base 10
|
Calculadora: Exponencial de base 10 |
Exponencial de base e
|
Calculadora: Exponencial de base e |
(en verde); b)
(en amarillo); c)
(en rojo); d)
(en turquesa)
, donde
que crece con el tiempo
de acuerdo con la ecuación:

es valor de la magnitud en el instante
es el valor inicial de la variable, valor en
, cuando empezamos a medirla;
es la llamada tasa de crecimiento instantánea, tasa media de crecimiento durante el lapso transcurrido entre
;
.

usaremos la tecla
usaremos la tecla

