Familias de funciones elementales (1ºBach)
De Wikipedia
Menú: 
| Enlaces internos | Para repasar o ampliar | Enlaces externos | 
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras | 
| Tabla de contenidos | 
Funciones algebraicas y trascendentes
- Las funciones algebraicas son aquellas en las que las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
- Las funciones trascendentes son aquellas que no son algebraicas.
 Funciones algebraicas y trascendentes (8'51")     Sinopsis:
 Funciones algebraicas y trascendentes (8'51")     Sinopsis: La función "f" se dice "algebraica" si las operaciones que deben realizarse para determinar el número real "f(x)" son las llamadas algebraicas: suma, resta, multiplicación, división, potenciación de exponente constante y radicación de ínidice constante. Si "f" no es algebraica, se dice "trascendente".
Funciones lineales
 La función lineal     Descripción:
   La función lineal     Descripción: Representación de la familia de funciones lineales.
Funciones cuadráticas
 La función cuadrática     Descripción:
   La función cuadrática     Descripción: Representación de la familia de funciones cuadráticas.
Funciones raíz
Funciones de proporcionalidad inversa
Funciones exponenciales
| 
 
  
 
 | 
Propiedades
| Propiedades de la función exponencial Las funciones exponenciales de base  
 
 
 | 
Funciones logarítmicas
| Sea   
 
 
 | 
Propiedades
| Propiedades de la función logarítmica Las funciones exponenciales de base  
 
 
 | 
 . Se define la función exponencial de base
. Se define la función exponencial de base  como:
 como:
 (número e) es de especial importancia en matemáticas y se denomina simplementre función exponencial, sin hacer mención a la base.
 (número e) es de especial importancia en matemáticas y se denomina simplementre función exponencial, sin hacer mención a la base.


 .
.
 y
 y  .
.
 son crecientes
 son crecientes
 son decrecientes.
 son decrecientes.

 .
.
 (sin especificar la base).
 (sin especificar la base).

 .
.
 y
 y  .
.
![\sqrt[n]{x}](/wikipedia/images/math/5/e/4/5e4352778f3b156f05ef056f9793ec36.png) .
.
 .
.


