Familias de funciones elementales (1ºBach)
De Wikipedia
| Enlaces internos | Para repasar o ampliar | Enlaces externos | 
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras | 
| Tabla de contenidos | 
Funciones algebraicas y trascendentes
- Las funciones algebraicas son aquellas en las que las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
- Las funciones trascendentes son aquellas que no son algebraicas.
 Funciones algebraicas y trascendentes (8'51")     Sinopsis:
 Funciones algebraicas y trascendentes (8'51")     Sinopsis: La función "f" se dice "algebraica" si las operaciones que deben realizarse para determinar el número real "f(x)" son las llamadas algebraicas: suma, resta, multiplicación, división, potenciación de exponente constante y radicación de ínidice constante. Si "f" no es algebraica, se dice "trascendente".
Funciones lineales
| Las funciones lineales son aquellas que pueden describirse de la forma  
  La función lineal     Descripción: Representación de la familia de funciones lineales. | 
Funciones cuadráticas
 La función cuadrática     Descripción:
   La función cuadrática     Descripción: Representación de la familia de funciones cuadráticas.
Funciones irracionales
 La función irracional     Descripción:
   La función irracional     Descripción: Representación de la familia de funciones irracionales.
Funciones de proporcionalidad inversa
| Las funciones de proporcionalidad inversa son aquellas de la forma  donde el numero  Este tipo de funciones se llaman así porque si   La función de proporcionalidad inversa     Descripción: Representación de la familia de funciones de proporcionalidad inversa. Propiedades Las funciones de proporcionalidad inversa  
 
 | 
Una función homográfica es una función racional del tipo:

Proposición
Si transformamos una función de proporcionalidad inversa por medio de traslaciones horizontales y verticales, el resultado es una función homográfica.
Si partimos de una función de proporcionalidad inversa:

y sobre ella efectuamos traslaciones verticales y horizontales, nos quedaría:

Desarrollando esta expresión:

 La función homográfica     Descripción:
   La función homográfica     Descripción: Representación de la familia de funciones homográficas.
Funciones exponenciales
| 
 
  
 
 | 
Propiedades
| Propiedades de la función exponencial Las funciones exponenciales de base  
 
 
 | 
Funciones logarítmicas
| Sea   
 
 
 | 
Propiedades
| Propiedades de la función logarítmica Las funciones exponenciales de base  
 
 
 | 
Funciones trigonométricas
Ver tema: Funciones trigonométricas o circulares



 recibe el nombre de constante de proporcionalidad.
 recibe el nombre de constante de proporcionalidad.
 e
 e  son cantidades correspondientes de dos magnitudes inversamente proporcionales, con constante de proporcionalidad
 son cantidades correspondientes de dos magnitudes inversamente proporcionales, con constante de proporcionalidad  .
. 
 cumplen las siguientes propiedades:
 cumplen las siguientes propiedades:
 .
.
 y decrecientes si
 y decrecientes si  .
.

 . Se define la función exponencial de base
. Se define la función exponencial de base  como:
 como:
 (número e) es de especial importancia en matemáticas y se denomina simplementre función exponencial, sin hacer mención a la base.
 (número e) es de especial importancia en matemáticas y se denomina simplementre función exponencial, sin hacer mención a la base.

 .
.
 y
 y  .
.
 son crecientes
 son crecientes
 son decrecientes.
 son decrecientes.

 .
.
 (sin especificar la base).
 (sin especificar la base).

 .
.
 y
 y  .
.
![\sqrt[n]{x}](/wikipedia/images/math/5/e/4/5e4352778f3b156f05ef056f9793ec36.png) .
.
 .
.


