Polinomios (3ºESO Académicas)
De Wikipedia
| Enlaces internos | Para repasar | Para ampliar | Enlaces externos | 
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadora | 
| Tabla de contenidos | 
(Pág. 86)
Polinomios
| 
 | 
Para nombrar un polinomio usaremos una letra mayúscula (lo normal es usar las letras: P, Q, R, S, ...) seguida de las variables que forman parte del polinomio, entre paréntesis.
Por ejemplo:
a) El polinomio  está en forma reducida y es un trinomio de grado 3.
 está en forma reducida y es un trinomio de grado 3.
b) El polinomio  no está en forma reducida. Su forma reducida es
 no está en forma reducida. Su forma reducida es  . Es de grado 2.
. Es de grado 2.
c) Los polinomios constantes, como por ejemplo  , tienen grado 1. Sin embargo, el polinomio nulo,
, tienen grado 1. Sin embargo, el polinomio nulo,  , tiene grado cero.
, tiene grado cero.
d) Los polinomios  y
 y  son semejantes.
 son semejantes.
e) Los polinomios  y
 y  son iguales, porque al reducir el segundo y reordenar sus monomios, queda igual al primero.
 son iguales, porque al reducir el segundo y reordenar sus monomios, queda igual al primero.
 Tutorial 1 (18'29")     Sinopsis:
 Tutorial 1 (18'29")     Sinopsis:Tutorial en el que se dan las definiciones básicas del álgebra: expresión algebraica, monomios, polinomios, grado, término independiente, coeficientes...
 Tutorial 2 (11'43")     Sinopsis:
 Tutorial 2 (11'43")     Sinopsis: Polinomios. Grado de un polinomio. Ejemplos.
 Tutorial 3 (0'54")     Sinopsis:
 Tutorial 3 (0'54")     Sinopsis: Polinomios. Grado de un polinomio. Ejemplos.
 Tutorial 4 (8'22")     Sinopsis:
 Tutorial 4 (8'22")     Sinopsis: Aprende a calcular el grado relativo y absoluto de un polinomio.
Nota: Al "grado absoluto" de un polinomio se le llama simplemente "grado" del polinomio.
 Tutorial 5 (9'31")     Sinopsis:
 Tutorial 5 (9'31")     Sinopsis:Aprende a calcular el grado relativo y absoluto de un monomio y de un polinomio.
Nota: Al "grado absoluto" de un polinomio se le llama simplemente "grado" del polinomio.
 Tutorial 6a (7'58")     Sinopsis:
 Tutorial 6a (7'58")     Sinopsis: Polinomios: términos y tipos de polinomios. Polinomios nulos.
 Tutorial 6b (10'41")     Sinopsis:
 Tutorial 6b (10'41")     Sinopsis: Forma reducida de un polinomio. Grado. Polinomios iguales y semejantes.
 Tutorial 6c (8'50")     Sinopsis:
 Tutorial 6c (8'50")     Sinopsis: - Polinomios ordenados, completos / incompletos, homogéneos / heterogéneos.
- Valor numérico de un polinomio.
 Tutorial 7 (3'10")     Sinopsis:
 Tutorial 7 (3'10")     Sinopsis:Polinomios. Monomios. Grado y término independiente de un polinomio.
 Ejercicio 1 (10'15")     Sinopsis:
 Ejercicio 1 (10'15")     Sinopsis: 1) Indica de qué tipo son los polinomios siguientes, atendiendo al número de términos que tienen:
- a)   
- b)   
- c)   
- d)   
- e)   
- f)   
2) Expresa en forma reducida los siguientes polinomios:
- a)   
- b)   
- c)   
- d)   
 Ejercicio 2 (13'20")     Sinopsis:
 Ejercicio 2 (13'20")     Sinopsis: 3) Indica el grado de cada polinomio:
- a)  ;     b) ;     b) ;     c) ;     c)  
- d)  ;     e) ;     e) ;     f) ;     f)  
- g)  ;     h) ;     h) ;     i) ;     i)  
4) Indica cuáles de estos polinomios son iguales:
- a)  ;     b) ;     b) ;     c) ;     c) ;     d) ;     d)  
- e)  ;     f) ;     f) ;     g) ;     g) ;     h) ;     h)  
- i)  ;     j) ;     j) ;     k) ;     k) ;     l) ;     l)  
5) Indica cuáles de estos polinomios son semejantes entre sí:
- a)  ;     b) ;     b) ;     c) ;     c)  
- d)  ;     e) ;     e) ;     f) ;     f)  
- g)  ;     h) ;     h)  
 Ejercicio 3 (11'49")     Sinopsis:
 Ejercicio 3 (11'49")     Sinopsis: 6) Ordena, tanto de forma creciente como decreciente, e indica el grado de los siguientes polinomios:
- a)   
- b)   
- c)   
- d)   
- e)   
- f)   
 Ejercicio 4 (5'13")     Sinopsis:
 Ejercicio 4 (5'13")     Sinopsis: 7) Clasificar polinomios en homogéneos/heterogéneos.
- a)   
- b)   
- c)   
- d)   
- e)   
- f)   
- g) 5x3 − 6y3
 Ejercicio 5 (2'46")     Sinopsis:
 Ejercicio 5 (2'46")     Sinopsis: Dado el polinomio  , identifica sus términos junto con el coeficiente y exponente de cada uno de ellos.
, identifica sus términos junto con el coeficiente y exponente de cada uno de ellos.
 Ejercicio 6 (2'03")     Sinopsis:
 Ejercicio 6 (2'03")     Sinopsis: Escribe un polinomio que exprese el valor de "p" billetes de 20 pesos, "q" monedas de 10 pesos y "r" monedas de 5 pesos.
Elementos y grado de un polinomio.
Expresiones algebraicas: monomios y polinomios.
- Actividad en la que deberás encontrar la expresión polinómica adecuada para cada situación.
- Actividad en la que deberás construir un polinomio conocida cierta información sobre su grado y los coeficientes de sus términos.
- Actividad en la que deberás encontrar el valor de algún coeficiente de un polinomio.
- Actividad en la que aprenderás a escribir polinomios en su forma usual.
- Actividad en la que deberás decir cual es el coeficiente de cada grado de un polinomio.
 Actividad 4     Descripción:
   Actividad 4     Descripción: Actividad sobre polinomios.
Valor numérico y raíces de un polinomio
Si en un polinomio se sustituyen las letras por números y se realiza la operación indicada se obtiene un número que es el valor númerico del polinomio para los valores de las letras dados.
Si trabajamos con una sola variable, dado un polinomio P(x), el valor numérico de dicho polinomio para x=a es el número que se obtiene al sustituir la x por a y efectuar las operaciones indicadas. A ese número se le llama P(a).
Por ejemplo:
Dado  , el valor númerico de dicho polinomio para
, el valor númerico de dicho polinomio para  es
 es  
 Tutorial 1 (6'53")     Sinopsis:
 Tutorial 1 (6'53")     Sinopsis:Valor numérico de un polinomio.
 Tutorial 2 (6'17")     Sinopsis:
 Tutorial 2 (6'17")     Sinopsis: Aprende a calcular el valor numérico de un polinomio
 Tutorial 3 (2'10")     Sinopsis:
 Tutorial 3 (2'10")     Sinopsis: Valor numérico de un polinomio.
 Ejercicio 1 (3'59")     Sinopsis:
 Ejercicio 1 (3'59")     Sinopsis: Halla el valor numérico del polinomio  cuando
 cuando  
 Ejercicio 2 (5'31")     Sinopsis:
 Ejercicio 2 (5'31")     Sinopsis: Dado el polinomio  , determina
, determina  .
.
 Ejercicio 3 (4'58")     Sinopsis:
 Ejercicio 3 (4'58")     Sinopsis: Halla el valor numérico del polinomio  cuando
 cuando  y
  y   
 Ejercicio 4 (5'13")     Sinopsis:
 Ejercicio 4 (5'13")     Sinopsis: 8) Calcula el valor numérico de los siguientes polinomios para el valor de la variable indicado:
- a)  para para  
- b)  para para  
- c)  para para  
- d)  para para  
- e)  para para  
 Ejercicio 5 (2'46")     Sinopsis:
 Ejercicio 5 (2'46")     Sinopsis: Evalúa el polinomio  en
 en  .
.
Distintas situaciones en las que se hace uso del valor numérico de un polinomio. Por ejemplo, cuando se expresa un número en un sistema de numeración de una determinada base.
Actividades en las que deberás calcular el valor numérico de un polinomio.
Un número se dice que es una raíz de un polinomio si el valor numérico del polinomio para dicho número es cero.
Esto es,  es una raíz de un polinomio
 es una raíz de un polinomio  si y solo si
 si y solo si  .
. 
O dicho de otra manera, las raíces de un polinomio  son las soluciones de la ecuación
 son las soluciones de la ecuación  .
.
Veamos como el número  es una raíz del polinomio
 es una raíz del polinomio  .
.
En efecto, al sustituir la x por 2, el valor numérico del polinomio es cero:  
| Actividad: Valor numérico y raíces de un polinomio Calcula el valor numérico del polinomio  
 
 Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: 
 De a) y c) se deduce que x=2 y x=1 son raíces del polinomio. Prueba a introducir lo siguiente: roots x^2-3x+2 | 
Operaciones con polinomios
Reducción de polinomios
Procedimiento
Para reducir un polinomio sumaremos o restaremos los monomios semejantes que aparezcan en su expresión. Los monomios resultantes se suelen ordenar de mayor a menor grado.
 Tutorial (4'34")     Sinopsis:
 Tutorial (4'34")     Sinopsis: Aprende a reducir polinomios con Chuck Norris.
 Ejercicio 1 (3'32")     Sinopsis:
 Ejercicio 1 (3'32")     Sinopsis: Reduce:  
 Ejercicio 2 (4'40")     Sinopsis:
 Ejercicio 2 (4'40")     Sinopsis: Reduce:  
 Ejercicio 3 (4'05")     Sinopsis:
 Ejercicio 3 (4'05")     Sinopsis: Reduce:  
 Autoevaluación 1     Descripción:
   Autoevaluación 1     Descripción: Reducción de polinomios.
 Autoevaluación 2     Descripción:
   Autoevaluación 2     Descripción: Reducción de polinomios con coeficientes racionales.
Suma y resta de polinomios
Procedimiento
Para sumar o restar polinomios, sumaremos o restaremos los monomios semejantes de ambos.
 Tutorial 1 (7'35")     Sinopsis:
 Tutorial 1 (7'35")     Sinopsis:Aprende a sumar y restar polinomios
 Tutorial 2 (23'12")     Sinopsis:
 Tutorial 2 (23'12")     Sinopsis:En este tutorial se explica la suma y resta de polinomios comenzando con algunas definiciones básicas y terminando con ejemplos.
 Tutorial 3a (Suma) (4'09")     Sinopsis:
 Tutorial 3a (Suma) (4'09")     Sinopsis: Aprende a sumar polinomios
 Tutorial 3b (Resta) (4'37")     Sinopsis:
 Tutorial 3b (Resta) (4'37")     Sinopsis: Aprende a restar polinomios
 Tutorial 4 (6'57")     Sinopsis:
 Tutorial 4 (6'57")     Sinopsis: Suma y resta de polinomios en una variable. Ejemplos.
 Tutorial 5a (Suma) (12'33")     Sinopsis:
 Tutorial 5a (Suma) (12'33")     Sinopsis: Suma de polinomios. Ejemplos.
 Tutorial 5b (Propiedades de la suma I) (14'39")     Sinopsis:
 Tutorial 5b (Propiedades de la suma I) (14'39")     Sinopsis: Propiedades de la suma de polinomios: conmutativa y asociativa.
 Tutorial 5c (Propiedades de la suma II) (5'40")     Sinopsis:
 Tutorial 5c (Propiedades de la suma II) (5'40")     Sinopsis: Propiedades de la suma de polinomios: Elemento neutro y opuesto.
 Tutorial 5d (Resta) (7'58")     Sinopsis:
 Tutorial 5d (Resta) (7'58")     Sinopsis: Resta de polinomios. Equivalencias fundamentales.
 Tutorial 6 (9'25")     Sinopsis:
 Tutorial 6 (9'25")     Sinopsis:Suma y resta de polinomios.
 Ejercicio 1 (2'55")     Sinopsis:
 Ejercicio 1 (2'55")     Sinopsis: Calcula la suma:  
 Ejercicio 2 (3'15")     Sinopsis:
 Ejercicio 2 (3'15")     Sinopsis: Calcula la suma:  
 Ejercicio 3 (2'51")     Sinopsis:
 Ejercicio 3 (2'51")     Sinopsis: Calcula la resta:  
 Ejercicio 4 (6'27")     Sinopsis:
 Ejercicio 4 (6'27")     Sinopsis: Calcula la resta:  
 Ejercicio 5 (8'56")     Sinopsis:
 Ejercicio 5 (8'56")     Sinopsis:Calcula:
a)  b)
b)  
 Ejercicio 6a (3'29")     Sinopsis:
 Ejercicio 6a (3'29")     Sinopsis: Simplifica:  
 Ejercicio 6b (2'17")     Sinopsis:
 Ejercicio 6b (2'17")     Sinopsis: Simplifica:  
 Ejercicio 6c (7'38")     Sinopsis:
 Ejercicio 6c (7'38")     Sinopsis: Resta  de
 de  .
.
 Ejercicio 6d (3'57")     Sinopsis:
 Ejercicio 6d (3'57")     Sinopsis: Simplifica:  
 Ejercicio 6e (3'07")     Sinopsis:
 Ejercicio 6e (3'07")     Sinopsis: Simplifica:  
 Ejercicio 6f (2'47")     Sinopsis:
 Ejercicio 6f (2'47")     Sinopsis: Simplifica:  
 Ejercicio 6g (4'14")     Sinopsis:
 Ejercicio 6g (4'14")     Sinopsis: Resta  de
 de  .
.
 Ejercicio 6h (2'52")     Sinopsis:
 Ejercicio 6h (2'52")     Sinopsis: Encuentra el error cometido en la resta que se muestra en el video.
 Ejercicio 7a (13'40")     Sinopsis:
 Ejercicio 7a (13'40")     Sinopsis: 1) Ordena los polinomios y realiza las sumas que se indican:
 ; ;  
 ; ;  
1a) P(x) + Q(x)
1b) P(x) + R(x)
1c) P(x) + S(x)
 Ejercicio 7b (10'49")     Sinopsis:
 Ejercicio 7b (10'49")     Sinopsis: Dados los siguientes polinomios, realiza las sumas que se indican:
 ; ;  
 ; ;  
1d) Q(x) + S(x)
1e) R(x) + S(x)
1f) Q(x) + R(x)
 Ejercicio 8a (17'35")     Sinopsis:
 Ejercicio 8a (17'35")     Sinopsis: 2) Sumas los siguientes polinomios y compara el grado del polinomio suma con el grado de los polinomios sumandos.
3a) Escribe opuestos de los siguientes polinomios:
 ; ;  
 ; ;  
 ; ;  
3b) Suma cada uno de los polinomios del apartado anterior con su opuesto.
3c) Calcula un polinomio A(x) tal que   , siendo
, siendo  .
.
 Ejercicio 8b (16'45")     Sinopsis:
 Ejercicio 8b (16'45")     Sinopsis: Dados los siguientes polinomios:
 ; ;  
 ; ;  
3d) Calcula un polinomio B(x) tal que   .
.
3e) Calcula un polinomio C(x) tal que   .
.
3f) Calcula un polinomio D(x) tal que   .
.
 Ejercicio 9 (12'30")     Sinopsis:
 Ejercicio 9 (12'30")     Sinopsis: Dados los polinomios:
 ; ;  
 ; ;  
 ; ;  
4a) Calcula P(x) - Q(x).
4b) Calcula P(x) - R(x).
4c) Calcula [P(x) + Q(x)]-[R(x) + S(x)]
4d) Calcula [P(x) + S(x)]-[Q(x) + R(x)]
4e) Calcula T(x) + M(x)
4f) Calcula T(x) - M(x)
 Ejercicio 10 (16'53")     Sinopsis:
 Ejercicio 10 (16'53")     Sinopsis: 5) ¿Qué polinomio se ha de restar al polinomio  para obtener el polinomio
 para obtener el polinomio  ?
?
6) Dados los polinomios
 ; ;  
calcula el valor de  sabiendo que
 sabiendo que  .
.
7) Escribe dos polinomios de tercer grado de tal modo que su suma se el polinomio nulo.
8) Escribe dos polinomios reducidos de segundo grado y comprueba con ellos la conmutatividad de la suma.
 Ejercicio 11 (14'20")     Sinopsis:
 Ejercicio 11 (14'20")     Sinopsis: 9) Dado el polinomio  , escribe su opuesto, -P(x). Calcula los valores numéricos de P(x) y -P(x) para x = 0, x = 1 y x = 2, y comprueba comprueba que son números opuestos.
, escribe su opuesto, -P(x). Calcula los valores numéricos de P(x) y -P(x) para x = 0, x = 1 y x = 2, y comprueba comprueba que son números opuestos.
10) ¿Qué polinomio tienes que sumar con  para que la suma sea 5x^3-6x?
 para que la suma sea 5x^3-6x?
11) Dado el polinomio  , halla otro polinomio Q(x) tal que
, halla otro polinomio Q(x) tal que  .
.
 Ejercicio 12 (7'27")     Sinopsis:
 Ejercicio 12 (7'27")     Sinopsis: Dados los polinomios
 ; ;  
 ; ;  
 ; ;  
12a) Calcula P(x) + Q(x).
12b) Calcula P(x) - V(x).
12c) Calcula P(x) + R(x).
12d) Calcula P(x) - R(x).
12e) Calcula S(x) + T(x) + V(x).
12f) Calcula S(x) - T(x) + V(x).
 Ejercicio 13 (11'55")     Sinopsis:
 Ejercicio 13 (11'55")     Sinopsis: 13) Dados los polinomios
 ; ;  
calcula el polinomio M(x) tal que P(x) + M(x) = Q(x).
 Ejercicio 14 (15'13")     Sinopsis:
 Ejercicio 14 (15'13")     Sinopsis: 17) La diferencia de dos polinomios es:
Calcula  sabiendo que
 sabiendo que  .
.
18) ¿Qué polinomio hay que sumar al polinomio  para obtener el polinomio opuesto de
 para obtener el polinomio opuesto de  ?
?
19) Dados los polinomios:
 ; ; ; ;  
- 19a) Calcula P(x) + Q(x) - R(x)
- 19b) Calcula P(x) + R(x) - Q(x)
- 19c) Calcula Q(x) + R(x) - P(x)
- 19d) Calcula P(x) + Q(x) + R(x)
14) Escribe dos polinomios cualesquiera y súmalos. Contesta:
- 14a) ¿Es mayor el grado de los sumandos o el de la suma? ¿Es igual? ¿Es menor?
- 14b) ¿Puede en algún caso ser menor el grado de la suma que el de los sumandos? ¿Cuándo? Justifícalo con ejemplos.
15) ¿Qué puedes decir del grado de la diferencia de dos polinomios?
16) escribe dos polinomios de tercer grado de modo que su suma se el polinomio  .
.
 Ejercicio 15 (6'49")     Sinopsis:
 Ejercicio 15 (6'49")     Sinopsis: Determina el valor de "m" y "n" sabiendo que  , en los siguientes casos:
, en los siguientes casos:
Actividades para aprender y practicar la suma y resta de polinomios.
Ejercicios para practicar la suma y resta de polinomios.
 Autoevaluación 1a (suma)     Descripción:
   Autoevaluación 1a (suma)     Descripción: Suma de polinomios.
 Autoevaluación 1b (resta)     Descripción:
   Autoevaluación 1b (resta)     Descripción: Resta de polinomios.
 Autoevaluación 1c     Descripción:
   Autoevaluación 1c     Descripción: Suma y resta de polinomios.
 Autoevaluación 1d     Descripción:
   Autoevaluación 1d     Descripción: Suma y resta de polinomios con dos variables.
 Autoevaluación 1e     Descripción:
   Autoevaluación 1e     Descripción: Suma y resta de polinomios con dos variables.
 Autoevaluación 1f     Descripción:
   Autoevaluación 1f     Descripción: Suma y resta de polinomios con dos variables: encuentra el error.
 Autoevaluación 2a (suma)     Descripción:
   Autoevaluación 2a (suma)     Descripción: Suma de polinomios.
 Autoevaluación 2b (resta)     Descripción:
   Autoevaluación 2b (resta)     Descripción: Resta de polinomios.
 Autoevaluación 3     Descripción:
   Autoevaluación 3     Descripción: Ejercicios de autoevaluación sobre suma y resta de polinomios.
Producto de un monomio por un polinomio
Procedimiento
Para multiplicar un monomio por un polinomio, se aplica la propiedad distributiva, es decir, se multiplica el monomio por cada término del polinomio y se suman los resultados.
 Tutorial 1 (12'28")     Sinopsis:
 Tutorial 1 (12'28")     Sinopsis: Aprende a multiplicar un monomio por un polinomio
 Tutorial 2 (6'19")     Sinopsis:
 Tutorial 2 (6'19")     Sinopsis: Cómo se multiplica un polinomio por un monomio.
 Ejercicio 1a (4'08")     Sinopsis:
 Ejercicio 1a (4'08")     Sinopsis: Multiplica y reduce:
- a)   
- b)   
 Ejercicio 1b (2'06")     Sinopsis:
 Ejercicio 1b (2'06")     Sinopsis: Expresa el área de la figura dada en el video como un trinomio.
 Ejercicio 1c (2'38")     Sinopsis:
 Ejercicio 1c (2'38")     Sinopsis: Multiplica:  
 Ejercicio 1d (5'31")     Sinopsis:
 Ejercicio 1d (5'31")     Sinopsis: Averigua el valor de "c", "d" y "f" sabiendo que  
 Ejercicio 2 (7'07")     Sinopsis:
 Ejercicio 2 (7'07")     Sinopsis: Multiplica:
- a)   
- b)   
- c)   
- d)   
 Ejercicio 3 (8'21")     Sinopsis:
 Ejercicio 3 (8'21")     Sinopsis: Haz las siguientes multiplicaciones de monomios:
- a)   
- b)   
- c)   
 Ejercicio 4a (8'55")     Sinopsis:
 Ejercicio 4a (8'55")     Sinopsis: Calcula  
 Ejercicio 4b (7'19")     Sinopsis:
 Ejercicio 4b (7'19")     Sinopsis: Calcula:
- 1c)   
- 1d)   
Actividades para aprender y practicar la multiplicación de un monomio por un polinomio.
 Autoevaluación 1     Descripción:
   Autoevaluación 1     Descripción: Multiplicación de un número por un polinomio.
 Autoevaluación 2     Descripción:
   Autoevaluación 2     Descripción: Multiplicación de monomios por polinomios.
 Autoevaluación 3     Descripción:
   Autoevaluación 3     Descripción: Multiplicación de monomios por polinomios.
 Autoevaluación 4     Descripción:
   Autoevaluación 4     Descripción: Multiplicación de monomios por polinomios.
Producto de polinomios
Procedimiento
Para multiplicar dos polinomios, se multiplica cada monomio de uno de sus factores por todos y cada uno de los monomios del otro factor y, después, se suman los monomios semejantes obtenidos.
 Producto de binomios (7'55")     Sinopsis:
 Producto de binomios (7'55")     Sinopsis: Aprende a multiplicar binomios
 Tutorial 1 (9'17")     Sinopsis:
 Tutorial 1 (9'17")     Sinopsis:Aprende a multiplicar polinomios
 Tutorial 2 (25'22")     Sinopsis:
 Tutorial 2 (25'22")     Sinopsis:En este tutorial se explica la multiplicación de monomios y polinomios comenzando con algunas definiciones básicas y terminando con ejemplos.
 Tutorial 3 (5'56")     Sinopsis:
 Tutorial 3 (5'56")     Sinopsis: Producto de monomios y polinomios en una variable.
 Tutorial 4a (10'09")     Sinopsis:
 Tutorial 4a (10'09")     Sinopsis: Cómo se multiplican polinomios.
 Tutorial 4b (Propiedades I) (12'15")     Sinopsis:
 Tutorial 4b (Propiedades I) (12'15")     Sinopsis: Propiedades conmutativa y asociativa del producto de polinomios.
 Tutorial 4c (Propiedades II) (11'40")     Sinopsis:
 Tutorial 4c (Propiedades II) (11'40")     Sinopsis: Elemento neutro y distributiva en el producto de polinomios.
 Tutorial 5 (8'08")     Sinopsis:
 Tutorial 5 (8'08")     Sinopsis:Producto de polinomios.
Producto de binomios:
 Ejercicio 1 (6'12")     Sinopsis:
 Ejercicio 1 (6'12")     Sinopsis: Multiplica (x − 4)(x + 7).
 Ejercicio 2 (8'27")     Sinopsis:
 Ejercicio 2 (8'27")     Sinopsis: Multiplica (3x + 2)(5x − 7).
 Ejercicio 3 (5'09")     Sinopsis:
 Ejercicio 3 (5'09")     Sinopsis: Halla el área de la figura dada en el video, expresándola como el producto de dos binomios y como un trinomio.
Producto de binomios por polinomios:
 Ejercicio 1 (2'28")     Sinopsis:
 Ejercicio 1 (2'28")     Sinopsis: Multiplica  .
.
 Ejercicio 2 (8'47")     Sinopsis:
 Ejercicio 2 (8'47")     Sinopsis: Halla el área de la figura dada en el video.
 Ejercicio 3 (6'24")     Sinopsis:
 Ejercicio 3 (6'24")     Sinopsis: Halla el valor de "a" y "b" sabiendo que  .
.
Producto de polinomios:
 Ejercicio 1 (11'43")     Sinopsis:
 Ejercicio 1 (11'43")     Sinopsis: Multiplica:
- a)   
- b)   
- c)   
- d)   
 Ejercicio 2 (10'46")     Sinopsis:
 Ejercicio 2 (10'46")     Sinopsis:Multiplica:
- a)   
- b)   
- c)   
 Ejercicio 3 (5')     Sinopsis:
 Ejercicio 3 (5')     Sinopsis: Determinar el polinomio que tiene por raíces: 2, 3 y -1, siendo la última raíz de multiplicidad 2.
 Ejercicio 4 (12'49")     Sinopsis:
 Ejercicio 4 (12'49")     Sinopsis: Haz las siguientes multiplicaciones de polinomios:
- a)   
- b)   
- c)   
- d)   
 Ejercicio 5 (7'34")     Sinopsis:
 Ejercicio 5 (7'34")     Sinopsis: Dados los polinomios
 ; ; ; ;  
determina:
- a)   
- b) ![C(x) \cdot [A(x)+ B(x)]\;](/wikipedia/images/math/e/0/8/e08fa9a42dff804cada0dd81daf805b8.png)  
 Ejercicio 6 (9'59")     Sinopsis:
 Ejercicio 6 (9'59")     Sinopsis: Multiplica los siguientes polinomios en columna e indicar el grado de los factores y del producto.
- 3a)   
- 3b)   
- 3c)   
 Ejercicio 7 (10'27")     Sinopsis:
 Ejercicio 7 (10'27")     Sinopsis: - 4a) Comprueba la propiedad conmutativa del producto de polinomios con los polinomios siguientes:
 ; ;  
- 4b) Comprueba la propiedad asociativa del producto de polinomios con los polinomios siguientes:
 ; ; ;      C(x)=x-2\;</math> ;      C(x)=x-2\;</math>
 Ejercicio 8 (7'26")     Sinopsis:
 Ejercicio 8 (7'26")     Sinopsis: - 5) Elemento neutro del producto de polinomios: Multiplica el polinomio  por el polinomio por el polinomio . ¿Qué polinomio obtienes? . ¿Qué polinomio obtienes?
- 6a) Comprueba la propiedad conmutativa del producto de polinomios con los polinomios siguientes:
 ; ;  
 Ejercicio 9 (7'25")     Sinopsis:
 Ejercicio 9 (7'25")     Sinopsis: - 6b) Comprueba la propiedad asociativa del producto de polinomios con los polinomios siguientes:
 ; ; ; ;  
 Ejercicio 10 (10'48")     Sinopsis:
 Ejercicio 10 (10'48")     Sinopsis: - 7a) Comprueba la propiedad distributiva del producto respecto de la suma de polinomios
![P(x) \cdot [Q(x)+R(x)]\;](/wikipedia/images/math/b/9/6/b96fc101039408c7ae1321f879455e95.png)
con los polinomios siguientes:
 ; ; ; ;  
 Ejercicio 11 (6'49")     Sinopsis:
 Ejercicio 11 (6'49")     Sinopsis: - 7b) Dados los polinomios
 ; ;  
calcula
teniendo en cuenta que  .
.
 Ejercicio 12 (9'15")     Sinopsis:
 Ejercicio 12 (9'15")     Sinopsis: Dados los polinomios:
 ; ; ; ;
 ; ;  
calcula:
- 8a)   
- 8b)   
- 8c)   
- 8d)   
- 8e)   
 Ejercicio 13 (9'56")     Sinopsis:
 Ejercicio 13 (9'56")     Sinopsis: Dados los polinomios:
 ; ; ; ;
 ; ;  
calcula:
- 8f) ![[P(x)]^2 \cdot R(x)\;](/wikipedia/images/math/2/3/e/23e83f298368c1a8c3119ea50a751be1.png)  
- 8g) ![[Q(x)]^2\;](/wikipedia/images/math/f/c/0/fc0c585adb8c3eb99ba38d3006893145.png)  
- 8h) ![[Q(x)]^2 \cdot S(x)\;](/wikipedia/images/math/5/d/c/5dce56fdbd0aef855ffaa69a67baf805.png)  
 Ejercicio 14 (12'55")     Sinopsis:
 Ejercicio 14 (12'55")     Sinopsis: calcula hallando previamente el grado de los factores y del producto:
- 9a)   
- 9b)   
- 9c)   
- 9d)   
- 9e)   
- 9f)   
 Ejercicio 15 (5'57")     Sinopsis:
 Ejercicio 15 (5'57")     Sinopsis: Calcula:
- 10a)   
- 10b)   
- 10c)   
- 10d)   
- 10e)   
- 10f)   
 Ejercicio 16 (1'52")     Sinopsis:
 Ejercicio 16 (1'52")     Sinopsis: Completa:
- a) Si grado de P(x)=1 y grado de Q(x)=3, el grado de P(x)·Q(x) es ...
- b) Si grado de P(x)=2 y grado de Q(x)=4, el grado de P(x)·Q(x) es ...
- c) Si grado de P(x)=1 y grado de Q(x)=3, el grado de P(x)·Q(x) es ...
- d) Si grado de P(x)=6 y grado de Q(x)=1, el grado de P(x)·Q(x) es ...
Problemas:
 Problema 1 (7'13")     Sinopsis:
 Problema 1 (7'13")     Sinopsis: Halla el volumen de un depósito cuya base tiene un área de  metros cuadrados y una altura de
 metros cuadrados y una altura de  metros.
 metros.
 Problema 2 (8'21")     Sinopsis:
 Problema 2 (8'21")     Sinopsis: Escribe un binomio que exprese la diferencia entre el área de un rectángulo que mide "p" de largo y "2r" de ancho, y el área de un círculo cuyo diámetro mide 4r.
 Problema 3 (5'28")     Sinopsis:
 Problema 3 (5'28")     Sinopsis: La parte de vidrio de una ventana tiene una proporción de 3:2 entre su largo y su ancho (la altura la podemos representar como 3x y la anchura como 2x). El marco de la ventana añade 7 cm al ancho total y 8 cm al alto total. Encuentra un polinomio, en términos de "x", que represente el área total de la ventana, incluyendo el marco.
Actividades para aprender y practicar la multiplicación de polinomios.
 Autoevaluación 1a     Descripción:
   Autoevaluación 1a     Descripción: Multiplicación de binomios.
 Autoevaluación 1b     Descripción:
   Autoevaluación 1b     Descripción: Multiplicación de binomios.
 Autoevaluación 1c     Descripción:
   Autoevaluación 1c     Descripción: Multiplicación de binomios por polinomios.
 Autoevaluación 2     Descripción:
   Autoevaluación 2     Descripción: Ejercicios de autoevaluación sobre producto de de polinomios.
| Actividad: Operaciones con polinomios Haz las siguientes operaciones con polinomios: 
 Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: a) expand (3x^3-5x^2-3x+2)+(x^3-4x-1)-(2x^2-x-2) b) expand (3x^3-5x^2-3x+2)*2x^2 c) expand (2x^2+2x-3)*(2x-5) | 
Ejercicios
 Ejercicio: Operaciones con polinomios (3'25")     Sinopsis:
 Ejercicio: Operaciones con polinomios (3'25")     Sinopsis: ¿Qué expresiones son equivalentes con  ?
?
Elige todas las opciones correctas:
- a)   
- b)   
- c) Ninguna de las anteriores.
Actividades sobre polinomios: Elementos y operaciones.
 Autoevaluación 1     Descripción:
   Autoevaluación 1     Descripción: Expresiones algebraicas equivalentes
 Autoevaluación 2     Descripción:
   Autoevaluación 2     Descripción: Ejercicios de autoevaluación sobre polinomios.
 Autoevaluación 3     Descripción:
   Autoevaluación 3     Descripción: Ejercicios de autoevaluación sobre polinomios.
 Ejercicios: Polinomios     Descripción:
   Ejercicios: Polinomios     Descripción: Ejercicios resueltos sobre polinomios.
 Ejercicio 1 (3'25")     Sinopsis:
 Ejercicio 1 (3'25")     Sinopsis: ¿Qué expresiones son equivalentes con  ?
?
Elige todas las opciones correctas:
- a)   
- b)   
- c) Ninguna de las anteriores.
 Ejercicio 2 (4'35")     Sinopsis:
 Ejercicio 2 (4'35")     Sinopsis: a) Halla el valor de "n" para que el grado de   sea 18.
 sea 18.
b) Halla el grado del polinomio  
 Ejercicio 3 (11'16")     Sinopsis:
 Ejercicio 3 (11'16")     Sinopsis: a) Calcula  sabiendo que
 sabiendo que  
b) Halla los valores de "m" y "n" para que se cumpla que  
 Ejercicio 4 (10'26")     Sinopsis:
 Ejercicio 4 (10'26")     Sinopsis: a) Si el grado de ![N(x)=\sqrt[n]{x^3\sqrt{x^8}}](/wikipedia/images/math/8/b/3/8b344ef04a0d2edd8cf80b100006935f.png) es 1, halla el grado de
 es 1, halla el grado de  , sabiendo que P(x) consta de "n" términos.
, sabiendo que P(x) consta de "n" términos.
b) Calcula cuanto suman los coeficientes de los términos del polinomio  
Ejercicios propuestos
| Ejercicios propuestos: Polinomios | 



 




 en los casos:
 en los casos:
 b)
     b)  c)
     c)  

 
 
 

 
 
 

 
 
 
 
 
 

 

 
 
 
 




