Plantilla:Fenómenos que decrecen de forma exponencial
De Wikipedia
También es de interés físico el decrecimiento exponencial, por el cual una cierta magnitud con el tiempo disminuye su valor, o se "atenúa" según una ley exponencial negativa del tipo:

Algunos fenómenos que siguen procesos de decrecimiento o atenuación exponencial son:
- La velocidad de un pequeño objeto sobre el que no actúan fuerzas en el seno de un fluido en reposo.
- La intensidad de corriente en un circuito eléctrico de continua con inductancia nula al que se le retira la tensión eléctrica.
- El número de átomos de una substancia radioactiva que se desintegran por unidad de tiempo.
- La intensidad luminosa de un haz de luz que se propaga en un medio absorbente.
- La probabilidad de supervivencia de ciertas especies que no muestran envejecimiento celular genéticamente determinado como muchos reptiles.
- El coeficiente de influencia en las sinapsis neuronales, lo cual explica el olvido a largo plazo.
Desintegración radioactiva

Las partículas alfa (núcleos de helio) se detienen al interponer una hoja de papel. Las partículas beta (electrones y positrones) no pueden atravesar una capa de aluminio. Sin embargo, los rayos gamma (fotones de alta energía) necesitan una barrera mucho más gruesa, y los más energéticos pueden atravesar el plomo.
La radiactividad o radioactividad es un fenómeno físico por el cual los núcleos de algunos elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas radiográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, entre otros. Debido a esa capacidad, se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma, o bien corpusculares, como pueden ser núcleos de helio, electrones o positrones, protones u otras. En resumen, es un fenómeno que ocurre en los núcleos de ciertos elementos inestables, que son capaces de transformarse o decaer, espontáneamente, en núcleos atómicos de otros elementos más estables. Así un isótopo pesado puede terminar convirtiéndose en uno mucho más ligero, como el uranio que, con el transcurrir de los siglos, acaba convirtiéndose en plomo.
La radiactividad se aprovecha para la obtención de energía nuclear, se usa en medicina (radioterapia y radiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades, entre otras).
En general son radiactivas las sustancias que no presentan un balance correcto entre protones o neutrones. Cuando el número de neutrones es excesivo o demasiado pequeño respecto al número de protones, se hace más difícil que la fuerza nuclear fuerte debido al efecto del intercambio de piones pueda mantenerlos unidos. Finalmente, el desequilibrio se corrige mediante la liberación del exceso de neutrones o protones, en forma de partículas α que son realmente núcleos de helio, y partículas β, que pueden ser electrones o positrones. Estas emisiones llevan a dos tipos de radiactividad:
- Radiación α, que aligera los núcleos atómicos en 4 unidades másicas, y cambia el número atómico en dos unidades.
- Radiación β, que no cambia la masa del núcleo, ya que implica la conversión de un protón en un neutrón o viceversa, y cambia el número atómico en una sola unidad (positiva o negativa, según si la partícula emitida es un electrón o un positrón).
Un tercer tipo de radiación, la radiación γ, se debe a que el núcleo pasa de un estado excitado de mayor energía a otro de menor energía, que puede seguir siendo inestable y dar lugar a la emisión de más radiación de tipo α, β o γ. La radiación γ es, por tanto, un tipo de radiación electromagnética muy penetrante, ya que tiene una alta energía por fotón emitido.
La desintegración radiactiva se comporta en función de la ley de decaimiento exponencial:

donde:
-
es el número de radioisótopos o radionúclidos existentes en un instante de tiempo t.
-
es el número de radioisótopos existentes en el instante inicial t = 0.
-
, llamada constante de desintegración radiactiva, es la probabilidad de desintegración por unidad de tiempo. La constante de desintegración es el cociente entre el número de desintegraciones por segundo y el número de átomos radiactivos (
).
Se llama tiempo de vida o tiempo de vida media de un radioisótopo el tiempo promedio de vida de un átomo radiactivo antes de desintegrarse. Es igual a la inversa de la constante de desintegración radiactiva ().
Al tiempo que transcurre hasta que la cantidad de núcleos radiactivos de un isótopo radiactivo se reduzca a la mitad de la cantidad inicial se le conoce como periodo de semidesintegración, período, semiperiodo, semivida o vida media (). Al final de cada período, la radiactividad se reduce a la mitad de la radiactividad inicial. Cada radioisótopo tiene un semiperiodo característico, en general diferente del de otros isótopos.
El periodo de semidesintegración del uranio-238 es aproximadamente 4.470 millones de años y el del uranio-235 es 704 millones de años,3 lo que los convierte en útiles para estimar la edad de la Tierra.