Plantilla:Ramas infinitas. Asíntotas (1ºBach)
De Wikipedia
| Revisión de 08:03 19 dic 2016 Coordinador (Discusión | contribuciones) (→Ramas infinitas de las funciones racionales) ← Ir a diferencia anterior | Revisión de 08:14 19 dic 2016 Coordinador (Discusión | contribuciones) (→Ramas infinitas de las funciones racionales) Ir a siguiente diferencia → | ||
| Línea 156: | Línea 156: | ||
| La función <math>f(x)\;</math> tiene las siguientes ramas infinitas: | La función <math>f(x)\;</math> tiene las siguientes ramas infinitas: | ||
| - | *'''ASÍNTOTAS VERTICALES:''' | + | *'''Asíntotas verticales:''' | 
| **Si <math>x=c\;</math> es una raíz de Q(x), entonces la recta <math>x=c\;</math> es una asíntota vertical de <math>f(x)\;</math>. | **Si <math>x=c\;</math> es una raíz de Q(x), entonces la recta <math>x=c\;</math> es una asíntota vertical de <math>f(x)\;</math>. | ||
| {{p}} | {{p}} | ||
| - | *'''ASÍNTOTAS HORIZONTALES:''' | + | *'''Asíntotas horizontales:''' | 
| **Si <math>n<m\;</math>, entonces la recta <math>y=0\;</math> es una asíntota horizontal de <math>f(x)\;</math>, tanto por <math>+ \infty</math>, como por <math>- \infty</math>. | **Si <math>n<m\;</math>, entonces la recta <math>y=0\;</math> es una asíntota horizontal de <math>f(x)\;</math>, tanto por <math>+ \infty</math>, como por <math>- \infty</math>. | ||
| **Si <math>n=m\;</math>, entonces la recta <math>y=\cfrac{a_n}{b_n}\;</math> es una asíntota horizontal de <math>f(x)\;</math>, tanto por <math>+ \infty</math>, como por <math>- \infty</math>. | **Si <math>n=m\;</math>, entonces la recta <math>y=\cfrac{a_n}{b_n}\;</math> es una asíntota horizontal de <math>f(x)\;</math>, tanto por <math>+ \infty</math>, como por <math>- \infty</math>. | ||
| {{p}} | {{p}} | ||
| - | *'''ASÍNTOTAS OBLICUAS:''' | + | *'''Asíntotas oblicuas:''' | 
| **Si <math>n-m=1\;</math>, <math>f(x)\;</math> tienen una asíntota oblicua, tanto por <math>+ \infty</math>, como por <math>- \infty</math>. Dicha asíntota es igual al cociente de la división entre <math>P(x)\;</math> y <math>Q(x)\;</math>. | **Si <math>n-m=1\;</math>, <math>f(x)\;</math> tienen una asíntota oblicua, tanto por <math>+ \infty</math>, como por <math>- \infty</math>. Dicha asíntota es igual al cociente de la división entre <math>P(x)\;</math> y <math>Q(x)\;</math>. | ||
| {{p}} | {{p}} | ||
| - | *'''RAMAS PARABÓLICAS:''' | + | *'''Ramas parabólicas:''' | 
| **Si <math>n-m>1\;</math>, entonces <math>f(x)\;</math> tiene una rama parabólica, tanto por <math>+ \infty</math>, como por <math>- \infty</math>. | **Si <math>n-m>1\;</math>, entonces <math>f(x)\;</math> tiene una rama parabólica, tanto por <math>+ \infty</math>, como por <math>- \infty</math>. | ||
| }} | }} | ||
| {{p}} | {{p}} | ||
| + | {{Ejemplo|titulo=Ejercicios resueltos|enunciado=Halla todas las ramas infinitas de las siguientes funciones: | ||
| + | {{p}} | ||
| + | :a) <math>y=\cfrac{x^2+1}{x^2-2x}</math>{{b4}}{{b4}}b) <math>y=\cfrac{x^2-5x+7}{x-2}</math>{{b4}}{{b4}}c) <math>y=\cfrac{x^3-5x^2}{-x+3}</math> | ||
| + | |sol= | ||
| + | a) A.V.: x=0, x=2; A.H.: y=1 | ||
| + | b) A.V.: x=2; A.O.: y=x-3 | ||
| + | c) A.V.: x=3; R.I. | ||
| + | |||
| + | ---- | ||
| + | Haz uso de la siguiente escena de Geogebra para comprobar la solución: | ||
| + | |||
| + | {{p}} | ||
| + | {{Geogebra_enlace | ||
| + | |descripcion=En esta escena podrás representar funciones definidas en hasta 4 trozos. | ||
| + | |enlace=[https://ggbm.at/JCV99Kf8 Representador de funciones] | ||
| + | }} | ||
| ===Ejercicios propuestos=== | ===Ejercicios propuestos=== | ||
| {{ejercicio | {{ejercicio | ||
Revisión de 08:14 19 dic 2016
| Tabla de contenidos | 
Ramas infinitas
Una función presenta una rama infinita si presenta una asíntota o una rama parabólica.
Pasamos a definir asíntota y rama parabólica.
Asíntota
Una asíntota es una recta hacia la que se acerca la gráfica de una función, tanto como se quiera, a medida que la variable independiernte se aproxima a un punto, a  o a
 o a  .
.
Hay tres tipos:
- Asíntota vertical (A.V.)
- Asíntota horizontal (A.H.)
- Asíntota oblicua (A.O.)
Asíntota vertical
| Una función  Nota: Se pueden dar las dos condiciones o una sola de ellas. Veamos cómo la función  En efecto, Haz uso de la siguiente escena de Geogebra para comprobar la solución:  Representador de funciones     Descripción: En esta escena podrás representar funciones definidas en hasta 4 trozos. | Asíntota vertical: x = 2 | 
Asíntota horizontal
| Una función   o bien,  Nota: Se pueden dar las dos condiciones o una sola de ellas. Veamos cómo la función  En efecto, Haz uso de la siguiente escena de Geogebra para comprobar la solución:  Representador de funciones     Descripción: En esta escena podrás representar funciones definidas en hasta 4 trozos. | Asíntota horizontal: y = 1 | 
Asíntota oblicua
| Una función  ![\lim_{x \to +\infty} [f(x)-(mx+n)]= 0](/wikipedia/images/math/b/4/f/b4f57eb5b14023e40e6485b640fd5691.png) o bien, ![\lim_{x \to -\infty} [f(x)-(mx+n)]= 0](/wikipedia/images/math/d/c/1/dc195dc202ab07f6f60038a1570d06b3.png) Nota: Se pueden dar las dos condiciones o una sola de ellas. Para calcular los coeficientes  
 
 Veamos cómo la función  En efecto, sea  Para  Haz uso de la siguiente escena de Geogebra para comprobar la solución:  Representador de funciones     Descripción: En esta escena podrás representar funciones definidas en hasta 4 trozos. | Asíntota oblicua: y = x + 3 | 
Rama parabólica
| Una función   o bien,  | Ramas parabólicas | 
Ejercicios propuestos
| Ejercicios propuestos: Ramas infinitas | 
Ramas infinitas de las funciones racionales
Proposición
Consideremos la función racional en la variable x, ya simplificada:

La función  tiene las siguientes ramas infinitas:
 tiene las siguientes ramas infinitas:
- Asíntotas verticales:
- Si  es una raíz de Q(x), entonces la recta es una raíz de Q(x), entonces la recta es una asíntota vertical de es una asíntota vertical de . .
 
- Si 
- Asíntotas horizontales: 
- Si  , entonces la recta , entonces la recta es una asíntota horizontal de es una asíntota horizontal de , tanto por , tanto por , como por , como por . .
- Si  , entonces la recta , entonces la recta es una asíntota horizontal de es una asíntota horizontal de , tanto por , tanto por , como por , como por . .
 
- Si 
- Asíntotas oblicuas: 
- Si  , , tienen  una asíntota oblicua, tanto por tienen  una asíntota oblicua, tanto por , como por , como por . Dicha asíntota es igual al cociente de la división entre . Dicha asíntota es igual al cociente de la división entre y y . .
 
- Si 
- Ramas parabólicas: 
- Si  , entonces , entonces tiene una rama parabólica, tanto por tiene una rama parabólica, tanto por , como por , como por . .
 
- Si 
{{Ejemplo|titulo=Ejercicios resueltos|enunciado=Halla todas las ramas infinitas de las siguientes funciones:
- a)  b) b) c) c)  
|sol= a) A.V.: x=0, x=2; A.H.: y=1 b) A.V.: x=2; A.O.: y=x-3 c) A.V.: x=3; R.I.
Haz uso de la siguiente escena de Geogebra para comprobar la solución:
 Representador de funciones     Descripción:
   Representador de funciones     Descripción: En esta escena podrás representar funciones definidas en hasta 4 trozos.
Ejercicios propuestos
| Ejercicios propuestos: Ramas infinitas de las funciones racionales | 
Ramas infinitas de las funciones trigonométricas, exponenciales y logarítmicas
Funciones trigonométricas
Funciones exponenciales
Funciones logartmicas
Ejercicios propuestos
| Ejercicios propuestos: Ramas infinitas de las funciones trigonométricas, exponenciales y logarítmicas | 
 una asíntota vertical (A.V.) si ocurre alguna, o ambas, de estas dos cosas:
 una asíntota vertical (A.V.) si ocurre alguna, o ambas, de estas dos cosas:
 
 

 presenta una A.V. en
 presenta una A.V. en  
 
 

 si:
 si:
 presenta una A.H. en
 presenta una A.H. en  
 
 

 si:
 si:
 y
 y  de la asíntota, se procederá de la siguiente manera:
 de la asíntota, se procederá de la siguiente manera:
 (o bien, con
     (o bien, con  )
)
![n=\lim_{x \to +\infty} [f(x)-mx]](/wikipedia/images/math/c/d/7/cd758129321f1a26b36d644470fd76f5.png) (o bien, con
     (o bien, con  presenta una A.O. en
 presenta una A.O. en  
 
![n=\lim_{x \to 1^+} [g(x)-x]= \lim_{x \to +\infty} \left[\cfrac{x^2+1}{x-3}-x \right]= \lim_{x \to +\infty} \cfrac{x^2+1-x^2+3x}{x-3}= \lim_{x \to +\infty} \cfrac{3x+1}{x-3}= \lim_{x \to +\infty} \cfrac{3x}{x}= 3](/wikipedia/images/math/5/5/e/55e95a0bb6413ed7aa2ce396d251d30d.png) 





